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Abstract

We consider compression of sequences in a database so niikdrity queries can be
performed efficiently in the compressed domain. The fundsaaidimits for this problem
setting, which characterize the tradeoff between commmesate and reliability of the answers
to the queries, have been characterized in past work. Howkeer to approach these limits
in practice has remained largely unexplored.

Recently, we proposed a scheme for this task that is basedistmg lossy compression
algorithms, for the general case where the similarity memasatisfies a triangle inequality.
Although it was shown that it achieves the fundamental Bridr some cases, it is suboptimal
in general. In this paper we propose a new scheme that alsdassy compression algorithms
as a building block, but with a carefully chosen distortioeasure that is different than the
one defining the similarity between sequences. The new setsgmificantly improves the
compression rate compared to the previously proposed sliemany cases. For example,
for binary sources and Hamming similarity measure, sintatesults show a compression
rate close to the fundamental limit, and an improvement dvemreviously proposed scheme
of up to 55% (for the same reliability). The results shed light on thet fhat compression for
similarity identification is inherently different than slksical lossy compression.

I. INTRODUCTION

The generation of new databases and the amount of data dmegases is growing
rapidly. Due to their size, performing queries on these lukgas can be a challenging
task. With this in mind, we study the problem of compressirdptabase so that queries
about the original data can be answered efficiently giveg tird compressed version. By
compressing the database, it will become possible to m@plithe compressed database
in several locations, thus providing easier and fasterss;and potentially reducing the
time needed to execute a query. Specifically, we focus oniepief the form:“which
sequences in the database are similar to a given sequegfitewhich are of practical
interest in many applications.

More formally, we consider schemes that generate, for eeghescex in the database,
a shortsignature of fixed-length, denoted by’(x), that is stored in the compressed
database. Then, given a query sequence/e answer the question of whetherandy
are similar, based only on the signaturéx), rather than the original sequenge

When answering a query, there are two types of errors thatbeamade: afalse
positive when a sequence is misidentified as similar to the queryese) and dalse
negative when a similar sequence stays undetected. We impose thietres that false
negatives are not permitted, as even a small probability false negative translates to
a substantial probability of misdetection of some sequemtéhe large database, which
is unacceptable in many applications. On the other hande fpbsitives do not cause
an errorper seas the precise level of similarity is assessed upon retriegivéghe full
sequence from the large database. However, they introdeoenputational burden due
to the need of further verification (retrieval), so we woulgelto reduce their probability
as much as possible.
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government and a Google research award.



This problem has been studied from an information-theoperspective in [1], [2] for
discrete sources, and in [3] for Gaussian sources. Thesrpapalyze the fundamental
tradeoff between compression rate, sequence length aadilig} of queries performed
on the compressed data. Although these limits enable tyzaméhe optimality of a given
scheme, the achievability proofs are non-constructivechviaises the question of how
to design such schemes in practice.

In this context, we recently proposed a scheme in [4] basetbssy compression
algorithms, which was shown to achieve the fundamentaltdirfor the case where i)
similarity is measured by Hamming distortion, and ii) bdtle sequences in the database
and the query sequences are i.i.d. with entries drawn imdkpely from a Ber(0.5)
distribution. However, as discussed in [2], this schemeulzoptimal in general.

With that in mind, in this paper we propose a new scheme whigld® upon the
one proposed in [4], that significantly improves the comgim@s rate in many cases.
Furthermore, it achieves a compression rate close to th#afuantal limit for the case
of general memoryless binary sources and Hamming distoribe proposed scheme
also uses lossy compression algorithms as a building biSpkcifically, the signature
of a sequence is composed of a compressed description of a reconstruséquoence
x (the output of a lossy compressor), and some additionatnmétion. However, while
the scheme introduced in [4] uses off-the-shell lossy casgors, the proposed scheme
carefully chooses the distortion measure to be used by #8yloompressor, such that
the empirical distribution of the sequencesandx is close to the optimal one (the one
required for achieving the fundamental limit of compreadior similarity identification).

For general binary sources and similarity measured by Hammistortion, we show
by simulation that the proposed scheme attains a notableoireament in performance
over the one introduced in [4], and a compression rate clmseet fundamental limit. For
the case of binary symmetric sources and Hamming distqrboth schemes coincide.
Finally, these schemes are easy to analyze and implemeahthay can work with any
discrete database and any similarity measure satisfyiadriiingle inequality.

Variants of this problem have been previously considerdberliterature. For example,
the Bloom filter [5], which is restricted to exact matchesal@es membership queries
from compressed data. Another related notion is that of litge8ensitive Hashing (LSH)
[6, Chapter 3], which is a framework for the nearest neigtgsarch (NNS) problem. The
key idea of LSH is to hash points in such a way that the proltlaif collision is higher
for points that are similar than for those that are far ap@ther methods for NNS
include vector approximation files (VA-File) [7], that emogk scalar quantization. An
extension of this method is the so called compressionkiugt based search [8], which
performs vector quantization implemented through clusgerWhile these techniques
trade off accuracy with computational complexity and spawed false negatives are
allowed, in our setting false negatives are not allowed, digmificant compression can
still be achieved.

The rest of the paper is organized as follows. In Section Illfevenalize the problem
and recall the fundamental limits. In Section Il and IV weiesv the scheme proposed
in [4] and introduce the new one, respectively. Simulatiesuits are shown in Section
V, and we provide some concluding remarks in section VI.

[I. PROBLEM FORMULATION AND FUNDAMENTAL LIMITS

A. Notation and Problem Description

Let upper case, lower case, and calligraphic letters derastdom variables, their
specific realizations, and their alphabets, respectiv@bldface notationx denotes a



vector of lengthn, i.e.,x = [zy,...,2,]7, and|[1 : k] denotes the sefl, 2, ..., k}.

Given two sequences andy, we measure thesimilarity by computing the distortion
d(x,y) given by 3" | p(x;,y;), wherep : X x ¥ — R* is an arbitrary distortion
measure. We say that two sequenseandy are D-similar (or simply similar when
clear from the context) whed(x,y) < D.

We consider databases consisting\éfdiscrete sequences of lengthi.e., {x®}M,.
The proposed architecture generates, for each sequerasignaturel/’(x), so that the
compressed database{i5(x")}M,. Then, given a query sequengethe scheme makes
the decision of whethex is D-similar toy, based only on its compressed versibfx),
rather than on the original sequenceNote that a scheme is completely defined given
its signature assignment and the corresponding decisien ru

More formally, a rateR identification system{7’, g) consists of a signature assignment
T : X" — [1:2"] and a decision functiog : [1 : 2"f] x Y — {no,maybe}. We use
the notation{no, maybe} instead of{no, yes} to reflect the fact that false positives are
permitted, while false negatives are not. This is formalipext. A system is said to be
D-admissibleif

g(T(x),y) = maybe V x,y s.t. d(x,y) < D. Q)

Since aD-admissiblescheme does not produce false negatives, a natural figuremf m
is the frequency at which false positives occur, that we wisminimize.

We recall next the fundamental limits on performance in ghisblem, as we will
refer to them in the following sections when assessing thiéopeance of the scheme
proposed in [4] and that of the new one.

B. Fundamental limits

Let X and Y be random vectors of length, representing the sequence from the
database and the query sequence, respectively. We askuamel Y are independent,
with entries drawn independently frof, and Py, respectively. Define thialse positive
eventasfp = {¢(7(X),Y) = maybe|d(X,Y) > D}. For a D-admissiblescheme,

P(g(T'(X),Y) =maybe) = P(d(X,Y) < D)+ P(fp)P(d(X,Y) > D). 2

Note thatP(fp) is the only term that depends on the scheme used, as the ethes t
depend strictly on the probability distribution & and’Y . Hence minimizingP(fp) over
all D-admissible schemes is equivalent to minimiziAgy(7'(X),Y) = maybe). Thus,
for a given D, the fundamental limits characterize the tradeoff betwibencompression
rate R and theP(g(7'(X),Y) = maybe).

Note that as» — oo, P(d(X,Y) < D) goes to one or to zero (according to whether
D is above or below the expected level of similarity betweérand Y’). The problem
is non-trivial only when the event of similarity is atypicéhe case on which we focus.
In this case, as is evident from (2y,(maybe) — 0 iff P(fp) — 0.

Definition 1: For given distributionPy, Py and similarity threshold, a rateR is said
to be D-achievableif there exists a sequence of raieadmissible schemed' ™, g™)),
s.t.lim,_,, P (g(") (T(")(X), Y) = maybe) = 0.

Definition 2: For a similarity thresholdD, the identification rate Rjp (D) is the infi-
mum of D-achievable rates. That i®,(D) = inf{R : R is D-achievablé.

For the case considered in this paper: discrete sourcesd;léxgth signature assign-
ment and zero false negatives, the identification rate isacerized in [2, Theorem 1]
as

Rin(D) = min I(X;U), (3)

 PuixSueu Pu(wp(Pxju(-|u),Py)>D



whereU is any random variable with finite alphalét(|i/| = |X'| + 2 suffices to obtain
the true value ofRp (D)), that is independent of. p(Px, Py) = minE[p(X,Y)] is
a distance between distributions, withbeing the distortion under which similarity is
measured, and where the minimization is w.r.t. all jointlgtdbuted random variables
X, Y with marginal distributionsPy and Py, respectively.

Finally, we define Dip(R) as the inverse function ofip(D), i.e., the similarity
threshold below which any similarity level can be achievedigen rateR.

As stated in the introduction, the scheme proposed in [4] stesvn to achieve these
limits in some particular examples, but not in general. Negtreview this scheme and
its optimality, which was analyzed in [2], as this will leadl the new scheme that we
propose in this paper.

The scheme proposed in [4] and the one proposed in this papdragsed on Lossy
Compressors (LC) and on a Type Covering lemma (TC), resgdgtiand they both use
a decision rule based on the triangle inequality).(Based on this, and to be consistent
with the notation used in [2], hereafter we refer to them aslth — A and TC — A
schemes, respectively. Note that whereas a scheme basedsyrcbmpressors.C — A
scheme) is straightforward to implement, as we did in [4]plementation of the type
covering lemma based schemB({ — A scheme) in practice is more challenging.

1. THE LC — A SCHEME
A. Description

The signature of thd.C — A scheme is based on fixed-length lossy compression
algorithms. They are characterized by an encoding funcfipnx — [1 : 2"%] and a
decoding functiory,, : [1 : 2] — %, wherex = g¢,(f,(x)) denotes the reconstructed
sequence. Specifically, the signature of a sequendée composed of the output €
[1 : 2"%] of the lossy compressor, and the distortion betwseand %, i.e., T'(x) =
{i,d(x,%x)} (see Fig. 1). The total rate of the systemAs= R’ + AR, whereR' is the
rate of the lossy-compressor afdr represents the extra rate to represent and store the
distortion valued(x, x).

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 1: Signature assignment of th€’ — A scheme for each sequencen the database.

Regarding the decision functiop : [1 : 2"f] x Y — {no,maybe}, recall that it
must satisfy (1). Given the signature assignment descraieye, the decision rule for
sequencex and query sequence is based on the tuplél'(x),y) = ({i,d(x,x)},y).
Notice thatx can be recovered from the signaturega&). The decision rule is given by

maybe, d(x,x)— D <d(x,y) <d(x,X)+ D;
oT0).y) = { ToIPe (hm P ) < A @

which satisfies (1) for any given distortion measure satigfythe triangle inequality.
In an attempt to reduce the rate of the system (e.g., dectieasize of the compressed
database) without affecting the performance, one can dser¢he value ofAR by



quantizing the distortion/(x, x). In that case, assuming < d(x,x) < dy,

maybe, dy— D <d(x,y) <dy + D,
oT,y) = { TIPS ®)

which preserves the admissibility of the scheme. WhN& can be arbitrary small
(for n — o0), there is a tradeoff for finite: between its value and th€(maybe),
as demonstrated in [4]. This will become relevant for theudations.

B. Asymptotic analysis

Recall from rate distortion theory [9] that an optimal lossympressor with rate?
attains for long enough sequences and with high probaklitistortion betweer andx
arbitrarily close to the distortion-rate functidn( R). Finally, consider the looser decision
rule g(T'(x),y) = no if d(x,y) > d(x,x) + D. Note that the scheme is still admissible
(zero false negatives) with this decision rule. Under thasenises, as shown in [2], an
LC — A scheme of ratek can attain any similarity threshold belof@};; ~“ (R), with

Dy~ % (R) £ E[p(X,Y)] ~ E[p(X, X)] = E[p(X,Y)] - D(R), (6)

whereE[p(X,Y)] is completely determined b (induced by the lossy compressor) and
Py. Finally, let RS ™" (D) be the inverse function abjy~“(R), i.e., the compression
rate achieved for a similarity threshold.

As shown in [2], for binary symmetric sources and Hammingadi®n, Rip (D) =

RIS2(D), i.e., the scheme achieves the fundamental limit. Howeler, scheme is

suboptimal in general, in the sense thap (D) < RIS (D).

IV. THE TC — A SCHEME
A. Motivation

A closer look at (6) suggests the following intuitive idea:the distortion rate case,
we wish to minimize the distortion with a constraint on thetoal information. The
optimization is with respect to the transition probabiliy, ;. This is in agreement with

(6), as we also want to minimiz&[p(X, X)]. However, the quantity[p(X,Y)] also
depends onPy (determined byPy , and Px). This suggests optimizing both terms
together. As shown in [2], this is possible, and the key isde a type covering lemma
(TC) to generatex (and not just the one that minimizes the distortion betwaeand
X). Specifically, any similarity threshold belo> ~“(R) can be attained by &C — A
scheme of ratd?, where

Diy “(D) £ max_ E[p(X,Y)] ~ E[p(X, X)]. (7)

Py x I(X;X)<R

As in the previous case, we denote ByS (D) the inverse function oD.> “(R).
It is easy to see thak.y “(D) < R;S (D). Furthermore, for memoryless binary
sources and Hamming distortidt\'s ~“ (D) = Rip(D) and both are strictly lower than
R%S‘A(D) for non-symmetric sources, the difference being partitylpronounced at
low distortion, as shown in [2] (see Fig 2).

The question now is how to create a practi€&l— /A scheme that achieveg .~ (D),
which will imply that the scheme achieves a smaller compoassate that an.C — A
scheme, and that it is optimal for general binary sourcesHardming distortion. While



X,Y ~ Bern(0.5) X,Y ~ Bern(0.7)
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Fig. 2: Binary sources and Hamming distortionAf = P, = Bern(0.5), Rilg‘ﬁ(p) =
RIS™2(D) = Rip(D), whereas ifPy = Py = Bern(0.7), RIS~ (D) > RS 2(D) =

RID (D

creating a practical scheme that achiey&§ “ (D) is straightforward, as shown in [4],
how to implement &I'C — A scheme is not clear in general. In this paper, we propose
a valid TC — A scheme, which we introduce next.

B. Description

Based on the previous results, for each sequende the database, we want to
generate a signature assignment from which we can recaehataequenceg such that the
empirical distribution betweer andx is equal to the one associated with the solution to
the optimization problem (7). This will imply that the scherattainsRE)C‘A(D); which
is better thanRILS‘A(D), attained by the scheme proposed in [4], and even optimal for
memoryless binary sources and Hamming distortion.

We propose a practical scheme for this task based on losspression algorithms.
Specifically, we show that the desired distribution can beea®d by carefully choosing
the distortion to be applied by the lossy compressor. Inrotds, if

Py = argmax E[p(X,Y)] —E[p(X, X)], ®)

XX .
PX‘X:I(X;X)SR

we are seeking a distortion measyré X, X) such that

Py = argmin  E[p"(X, X)), ©)
PX‘X:I(X;X)SR
i.e., the conditional probability induced by the lossy coegsor is equal th;QX.
We show that (9) holds if*(X, X) = log T where P} . is induced fromP}
%1% |X X|x

and Py, andI(X; X) = R. Note thatp*(X, X) is reminiscent of logarithmic loss [10].
This is based on the following lemma [11]:

Lemma 1:Let X ~ Py, and letPyx(x) > 0 for all z € X. For a channeIPX|X,
let Py ; be the reversed channel, and consider a rate distortiorigonolvith distortion
measure 1

p(x,u) = log (10)

PX|X(:C|U).



Then, for the rate constraift(X; /) < I(X;X), the optimal test channeby,  is
equal toPy .
Proof: First, note that

1
E[p(X,U)] Pxy(x,u)log (11)
PO = D Prote e
= ZPU D(Pxju(-[u)[|Px x(-|u)) + H(X[U), (12)
and that the rate constraint impliés(X|U) > H(X|X). Therefore,
Elp(X,U)] = ) Pu(u) D(Pxju(-Ju)|| Py x(|u) + H(X|X). (13)
Thus, .
min  E[p(X,U)] = H(X|X), (14)
Py x:1(XU)<T(X;X)
and the minimum is attained if and only Hy|; = Py x.
u

Going back to our setting, note that the optimization problé’) that solves for
Rip(D)T“~%, has the constrainf(X, X) < R. The maximizing probability (8) will
in general achievé (X, X) = R, and thus we can apply the lemma.

Therefore, the proposedC — A scheme effectively employs for the signature as-
signment a good lossy compressor for distortion meagurez) = log P where

(x\x
P)*{lX is induced byP*‘X, given by (8), andPyx. With an optimal lossy compressor and

assuming! (X, X) R, the joint type of the sequencasandx will be close toP; 21X

which ac:hlevesRTC 2. which is optimal for the case of general binary sources and
Hamming dlstortlon In the next section we show that the grerhince of the proposed
scheme approaches the fundamental performance limit, aridrpns notably better than
the LC — A scheme.

V. SIMULATION RESULTS

In this section we examine the performance of both ke — A and theTC —
A schemes. We consider datasets composed/dbinary sequences of length and
Hamming distortion for computing the similarity betweerggences. We generate the
sequences in the databaseXas- [[;_, Px(z;), with Px = Bern(p). These sequences are
independent of the query sequences, generatdd as[["_, Py (v;), with P,- = Bern(q).
With these assumptions, for each sequerCein the database; € [1 : M], given its
signatureT' (x), we can compute the probability that7'(x?),y) = maybe (for a
similarity thresholdD), denoted byP(maybe|T'(x*)), analytically, with the following
formula:

|_n(d1 +D

PlaagoelT) = 3 Z(“) (")t g, as)

D)] =0

whereny, denotes the number of zeros #f), andd, and d, are the delimiters of the
decision region to whichi(x®, %) belongs. If no quantization is applied, = d; =



d(x(i),x"). Finally, we compute the probability akybe for the database as the average
over all the sequences it contains, iB(maybe) = & - P(maybe|T'(x?)). Note that
we want this probability to be as small as possible. R
Regarding the quantization @fx, x), we approximate the distribution af X, X) as
a GaussiaoV (u, 02), wherep ando? are computed empirically (for each rate). We then
use the k-means algorithm to find thé& decision regionsAR = k/n, i.e., k bits are
allocated for the description of the quantized distortiofus, for each distortion, we
store only the decision region to which it belongs.

A. Binary symmetric sources and Hamming distortion

The performance of theC — A scheme in this setting was already discussed in [4].
Therefore, since thé.C — A and theTC — A schemes are equivalent in this case,
the reader can refer to [4] for more extensive simulatiomltesWe consider a dataset
composed ofM = 1000 binary sequences of length = 512, with p = ¢ = 0.5. As
the fixed-length lossy compression algorithm, we use a pifmming version of the
successive refinement compression scheme [12].

Regarding the quantization dfx, x), there exists a tradeoff between the quantization
level and the probability ohaybe. Fig. 3(a) shows the results for different quantization
levels (denoted byt) and a similarity threshold) = 0.20 (i.e., 80% similarity). As
expected, no special value bperforms better than the others for any overall compression
rate R. Therefore, in the subsequent figures the presented resuhsspond to the best
value of k for each rate. As it can be observed, we can reduce the sizeealdtabase
by 76% (R = 0.24) and retrieve on averages of the sequences per query. With%
reduction we can get @ (maybe) of 10~* (on average one sequence evefpl is
retrieved). One can get even more compression with the $4meybe) for lower values
of D, as shown in [4]. For exampl®5% compression with d% average retrieval is
achieved forD = 0.05.

-©-LSH: AND-OR scheme
= LSH: OR-AND scheme

-9 LC — A scheme

)
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Fig. 3: Binary symmetric sequences and similarity thredhol= 0.2: (a) performance
of the proposed scheme with quantized distortion (b) compan with LSH for rate
R=0.3.

Finally, we include a comparison with LSH [6]. We use the ated family of functions
H = {h;,i € [1:n]}, with h;(x) = (i), thei"* coordinate ofx, and consider both the
AND-OR and the OR-AND constructions described in [6, Cha@k Note that the
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Fig. 4. Performance of the proposed schemes for sequendesgth» = 512, similarity
thresholdsD = {0.05,0.1} and Py = Py = Bern(0.7) and Berri0.8).

comparison is not completely fair, as LSH allows false niegat(fn’s), compresses the
qguery sequence, and its design is not optimized for the proldonsidered in this paper.
This is reflected in Fig. 3(b), where we show the achievabtbabilities of fn’s and
false positives{p’s) for both schemes, considering the database introdubedeaand
rate R = 0.3. As can be observed, it is not possible to have both proliasilgoing to
zero at the same time, whereas the proposed scheme acloetke tame rate &(fp)
close to10~* with zerofn’s.

B. General binary sources and Hamming distortion

We compare the performance of th€' — A and LC' — A schemes, assumingy =
Py = Bern(p), with p # 0.5. For a fair comparison, we simulate both schemes with the
lossy compressor presented in [13], that allows to spebiydistortion to be used. The
LC—A scheme uses Hamming distortion, whereasitbe- /A scheme uses the distortion
measure given by (10), Witﬁ’X|X computed fromPy andPX‘X as defined in (8) (for each
rate). Note that this distortion is to be used only by theyagsnpressor. The decision rule
g(T(x),y) in both schemes still uses Hamming distortion to measurdasity between
sequences and the triangle inequality property for compgutie decision threshold.

We show simulation results in Fig. 4 for a dataset composetf ef 1000 sequences
of lengthn = 512, and Py = Py = Bern(0.7) and Berri0.8). We also plot the three
rates Rip = Ry © < RiS™*) and an approximation for each scheme, computed as
follows. For a given rateR, the approximation for thé.C — A scheme assumesy, ¢

is given asarg minPX‘X:I(X;X)gRE[p(X7X)] (rate distortion optimization problem), with

p representing Hamming distortion. On the other hand, forhe— A scheme,PX‘X

is assumed to be equal to (8). We then compute Rleaybe) of each scheme using

equation (15), withiy = d; = E[p(X,X)], with p representing Hamming distortion, and
As can be observed, thEC — A scheme performs better than th€ — A scheme in

all cases, as is suggested by the theory. For exampleX fot ~ Bern(0.7), D = 0.05
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andR = 0.13 (87% compression), while theC — A scheme achieveB(maybe) = 1074,
the TC — A scheme achieveH). Similarly, for D = 0.1 and R = 0.2, the P(maybe)
decreases from0~3 to 1074, i.e., on average it retrievessequence every0000, instead
of every1000. For the caseX,Y ~ Bern(0.8) we observe similar results. With = 0.05
(95% similarity) and P(maybe) = 1072, the TC — A scheme attain93% compression
(R = 0.07), whereas thd.C — /A schemes achieves ont% compression g = 0.16),
i.e., a reduction in rate 0$5%. Furthermore,R = 0.07 is close toR;5 “. Similarly,
for D = 0.1 and P(maybe) = 10~* the decrease in rate is froth35 to 0.3 bits, which
represents an improvement in compression4?%. Finally, notice that for a given rate,
the smaller the similarity threshol®, the smaller the”(maybe).

VI. CONCLUDING REMARKS

We investigated schemes for compressing a database soirthiktrity queries can
be performed efficiently on the compressed database. Traaf@ntal limits for this
problem have been characterized in past work, and they asrtree basis for performance
evaluation.

Recently, we proposed a scheme for this task based on lossgression algorithms
which was easy to analyze and implement. While its perfomeamas shown to be close
to the fundamental limits in some cases (e.g., binary symmsburces and Hamming
distortion), the scheme is suboptimal in general. In thizgpave proposed a new scheme
that builds upon the previous one and achieves a better @ssipn rate in many cases.
For example, for general memoryless binary sequences anuhitay distortion, our
suggested scheme exhibits on simulated data performameeamhing the fundamental
limits, substantially improving over the previous schenibe proposed scheme is also
based on lossy compression algorithms, but in this case aieiguisly design the distor-
tion measure to be applied by the lossy compressor, a meagucé is not Hamming
despite the fact that similarity for the query is measuredeurHamming. Finally, as was
the case with the previously proposed scheme, the one mdpusre is applicable to
any discrete database and similarity measure satisfyiadrifingle inequality.
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