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Abstract

We consider compression of sequences in a database so that similarity queries can be
performed efficiently in the compressed domain. The fundamental limits for this problem
setting, which characterize the tradeoff between compression rate and reliability of the answers
to the queries, have been characterized in past work. However, how to approach these limits
in practice has remained largely unexplored.

Recently, we proposed a scheme for this task that is based on existing lossy compression
algorithms, for the general case where the similarity measure satisfies a triangle inequality.
Although it was shown that it achieves the fundamental limits for some cases, it is suboptimal
in general. In this paper we propose a new scheme that also uses lossy compression algorithms
as a building block, but with a carefully chosen distortion measure that is different than the
one defining the similarity between sequences. The new scheme significantly improves the
compression rate compared to the previously proposed scheme in many cases. For example,
for binary sources and Hamming similarity measure, simulation results show a compression
rate close to the fundamental limit, and an improvement overthe previously proposed scheme
of up to 55% (for the same reliability). The results shed light on the fact that compression for
similarity identification is inherently different than classical lossy compression.

I. INTRODUCTION

The generation of new databases and the amount of data on existing ones is growing
rapidly. Due to their size, performing queries on these databases can be a challenging
task. With this in mind, we study the problem of compressing adatabase so that queries
about the original data can be answered efficiently given only the compressed version. By
compressing the database, it will become possible to replicate the compressed database
in several locations, thus providing easier and faster access, and potentially reducing the
time needed to execute a query. Specifically, we focus on queries of the form:“which
sequences in the database are similar to a given sequencey?” , which are of practical
interest in many applications.

More formally, we consider schemes that generate, for each sequencex in the database,
a short signatureof fixed-length, denoted byT (x), that is stored in the compressed
database. Then, given a query sequencey, we answer the question of whetherx andy
are similar, based only on the signatureT (x), rather than the original sequencex.

When answering a query, there are two types of errors that canbe made: afalse
positive, when a sequence is misidentified as similar to the query sequence; and afalse
negative, when a similar sequence stays undetected. We impose the restriction that false
negatives are not permitted, as even a small probability of afalse negative translates to
a substantial probability of misdetection of some sequences in the large database, which
is unacceptable in many applications. On the other hand, false positives do not cause
an errorper seas the precise level of similarity is assessed upon retrieval of the full
sequence from the large database. However, they introduce acomputational burden due
to the need of further verification (retrieval), so we would like to reduce their probability
as much as possible.
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This problem has been studied from an information-theoretic perspective in [1], [2] for
discrete sources, and in [3] for Gaussian sources. These papers analyze the fundamental
tradeoff between compression rate, sequence length and reliability of queries performed
on the compressed data. Although these limits enable to analyze the optimality of a given
scheme, the achievability proofs are non-constructive, which raises the question of how
to design such schemes in practice.

In this context, we recently proposed a scheme in [4] based onlossy compression
algorithms, which was shown to achieve the fundamental limits for the case where i)
similarity is measured by Hamming distortion, and ii) both the sequences in the database
and the query sequences are i.i.d. with entries drawn independently from a Bern(0.5)
distribution. However, as discussed in [2], this scheme is suboptimal in general.

With that in mind, in this paper we propose a new scheme which builds upon the
one proposed in [4], that significantly improves the compression rate in many cases.
Furthermore, it achieves a compression rate close to the fundamental limit for the case
of general memoryless binary sources and Hamming distortion. The proposed scheme
also uses lossy compression algorithms as a building block.Specifically, the signature
of a sequencex is composed of a compressed description of a reconstructionsequence
x̂ (the output of a lossy compressor), and some additional information. However, while
the scheme introduced in [4] uses off-the-shell lossy compressors, the proposed scheme
carefully chooses the distortion measure to be used by the lossy compressor, such that
the empirical distribution of the sequencesx and x̂ is close to the optimal one (the one
required for achieving the fundamental limit of compression for similarity identification).

For general binary sources and similarity measured by Hamming distortion, we show
by simulation that the proposed scheme attains a notable improvement in performance
over the one introduced in [4], and a compression rate close to the fundamental limit. For
the case of binary symmetric sources and Hamming distortion, both schemes coincide.
Finally, these schemes are easy to analyze and implement, and they can work with any
discrete database and any similarity measure satisfying the triangle inequality.

Variants of this problem have been previously considered inthe literature. For example,
the Bloom filter [5], which is restricted to exact matches, enables membership queries
from compressed data. Another related notion is that of Locality-Sensitive Hashing (LSH)
[6, Chapter 3], which is a framework for the nearest neighborsearch (NNS) problem. The
key idea of LSH is to hash points in such a way that the probability of collision is higher
for points that are similar than for those that are far apart.Other methods for NNS
include vector approximation files (VA-File) [7], that employs scalar quantization. An
extension of this method is the so called compression/clustering based search [8], which
performs vector quantization implemented through clustering. While these techniques
trade off accuracy with computational complexity and space, and false negatives are
allowed, in our setting false negatives are not allowed, butsignificant compression can
still be achieved.

The rest of the paper is organized as follows. In Section II weformalize the problem
and recall the fundamental limits. In Section III and IV we review the scheme proposed
in [4] and introduce the new one, respectively. Simulation results are shown in Section
V, and we provide some concluding remarks in section VI.

II. PROBLEM FORMULATION AND FUNDAMENTAL L IMITS

A. Notation and Problem Description

Let upper case, lower case, and calligraphic letters denoterandom variables, their
specific realizations, and their alphabets, respectively.Boldface notationx denotes a
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vector of lengthn, i.e., x = [x1, . . . , xn]
T , and [1 : k] denotes the set{1, 2, ..., k}.

Given two sequencesx andy, we measure theirsimilarity by computing the distortion
d(x,y) given by 1

n

∑n

i=1 ρ(xi, yi), whereρ : X × Y → R+ is an arbitrary distortion
measure. We say that two sequencesx and y are D-similar (or simply similar when
clear from the context) whend(x,y) ≤ D.

We consider databases consisting ofM discrete sequences of lengthn, i.e., {x(i)}Mi=1.
The proposed architecture generates, for each sequencex, a signatureT (x), so that the
compressed database is{T (x(i))}Mi=1. Then, given a query sequencey, the scheme makes
the decision of whetherx is D-similar toy, based only on its compressed versionT (x),
rather than on the original sequencex. Note that a scheme is completely defined given
its signature assignment and the corresponding decision rule.

More formally, a rate-R identification system(T, g) consists of a signature assignment
T : X n → [1 : 2nR] and a decision functiong : [1 : 2nR] × Yn → {no, maybe}. We use
the notation{no, maybe} instead of{no, yes} to reflect the fact that false positives are
permitted, while false negatives are not. This is formalized next. A system is said to be
D-admissibleif

g(T (x),y) = maybe ∀ x,y s.t. d(x,y) ≤ D. (1)

Since aD-admissiblescheme does not produce false negatives, a natural figure of merit
is the frequency at which false positives occur, that we wishto minimize.

We recall next the fundamental limits on performance in thisproblem, as we will
refer to them in the following sections when assessing the performance of the scheme
proposed in [4] and that of the new one.

B. Fundamental limits

Let X and Y be random vectors of lengthn, representing the sequence from the
database and the query sequence, respectively. We assumeX and Y are independent,
with entries drawn independently fromPX andPY , respectively. Define thefalse positive
eventasfp = {g(T (X),Y) = maybe|d(X,Y) > D}. For aD-admissiblescheme,

P (g(T (X),Y) = maybe) = P (d(X,Y) ≤ D) + P (fp)P (d(X,Y) > D). (2)

Note thatP (fp) is the only term that depends on the scheme used, as the other terms
depend strictly on the probability distribution ofX andY. Hence minimizingP (fp) over
all D-admissible schemes is equivalent to minimizingP (g(T (X),Y) = maybe). Thus,
for a givenD, the fundamental limits characterize the tradeoff betweenthe compression
rateR and theP (g(T (X),Y) = maybe).

Note that asn → ∞, P (d(X,Y) ≤ D) goes to one or to zero (according to whether
D is above or below the expected level of similarity betweenX andY ). The problem
is non-trivial only when the event of similarity is atypical, the case on which we focus.
In this case, as is evident from (2),P (maybe) → 0 iff P (fp) → 0.

Definition 1: For given distributionPX , PY and similarity thresholdD, a rateR is said
to beD-achievableif there exists a sequence of rate-R admissible schemes(T (n), g(n)),
s.t. limn→∞ P

(

g(n)
(

T (n)(X),Y
)

= maybe
)

= 0.
Definition 2: For a similarity thresholdD, the identification rateRID(D) is the infi-

mum ofD-achievable rates. That is,RID(D) , inf{R : R is D-achievable}.
For the case considered in this paper: discrete sources, fixed-length signature assign-

ment and zero false negatives, the identification rate is characterized in [2, Theorem 1]
as

RID(D) = min
PU|X :

∑
u∈U PU (u)ρ̄(PX|U (·|u),PY )≥D

I(X ;U), (3)
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whereU is any random variable with finite alphabetU (|U| = |X |+ 2 suffices to obtain
the true value ofRID(D)), that is independent ofY . ρ̄(PX , PY ) = minE[ρ(X, Y )] is
a distance between distributions, withρ being the distortion under which similarity is
measured, and where the minimization is w.r.t. all jointly distributed random variables
X, Y with marginal distributionsPX andPY , respectively.

Finally, we defineDID(R) as the inverse function ofRID(D), i.e., the similarity
threshold below which any similarity level can be achieved at given rateR.

As stated in the introduction, the scheme proposed in [4] wasshown to achieve these
limits in some particular examples, but not in general. Nextwe review this scheme and
its optimality, which was analyzed in [2], as this will lead to the new scheme that we
propose in this paper.

The scheme proposed in [4] and the one proposed in this paper are based on Lossy
Compressors (LC) and on a Type Covering lemma (TC), respectively, and they both use
a decision rule based on the triangle inequality (△). Based on this, and to be consistent
with the notation used in [2], hereafter we refer to them as the LC −△ andTC −△
schemes, respectively. Note that whereas a scheme based on lossy compressors (LC−△
scheme) is straightforward to implement, as we did in [4], implementation of the type
covering lemma based scheme (TC−△ scheme) in practice is more challenging.

III. T HE LC−△ SCHEME

A. Description

The signature of theLC − △ scheme is based on fixed-length lossy compression
algorithms. They are characterized by an encoding functionfn : x → [1 : 2nR

′
] and a

decoding functiongn : [1 : 2nR
′
] → x̂, where x̂ = gn(fn(x)) denotes the reconstructed

sequence. Specifically, the signature of a sequencex is composed of the outputi ∈
[1 : 2nR

′
] of the lossy compressor, and the distortion betweenx and x̂, i.e., T (x) =

{i, d(x, x̂)} (see Fig. 1). The total rate of the system isR = R′ +∆R, whereR′ is the
rate of the lossy-compressor and∆R represents the extra rate to represent and store the
distortion valued(x, x̂).

fn(x)
x i ∈ [1 : 2nR

′

]
gn(i)

x̂ d(x, x̂)
d(·, ·)

x

T (·)

{i, d(x, x̂)}

i

Fig. 1: Signature assignment of theLC−△ scheme for each sequencex in the database.

Regarding the decision functiong : [1 : 2nR] × Yn → {no, maybe}, recall that it
must satisfy (1). Given the signature assignment describedabove, the decision rule for
sequencex and query sequencey is based on the tuple(T (x),y) = ({i, d(x, x̂)},y).
Notice thatx̂ can be recovered from the signature asgn(i). The decision rule is given by

g(T (x),y) =

{

maybe, d(x, x̂)−D ≤ d(x̂,y) ≤ d(x, x̂) +D;
no, otherwise, (4)

which satisfies (1) for any given distortion measure satisfying the triangle inequality.
In an attempt to reduce the rate of the system (e.g., decreasethe size of the compressed

database) without affecting the performance, one can decrease the value of∆R by



5

quantizing the distortiond(x, x̂). In that case, assumingd0 ≤ d(x, x̂) ≤ d1,

g(T (x),y) =

{

maybe, d0 −D ≤ d(x̂,y) ≤ d1 +D;
no, otherwise, (5)

which preserves the admissibility of the scheme. While∆R can be arbitrary small
(for n → ∞), there is a tradeoff for finiten between its value and theP (maybe),
as demonstrated in [4]. This will become relevant for the simulations.

B. Asymptotic analysis

Recall from rate distortion theory [9] that an optimal lossycompressor with rateR
attains for long enough sequences and with high probability, a distortion betweenx andx̂
arbitrarily close to the distortion-rate functionD(R). Finally, consider the looser decision
rule g(T (x),y) = no if d(x̂,y) > d(x, x̂) +D. Note that the scheme is still admissible
(zero false negatives) with this decision rule. Under thesepremises, as shown in [2], an
LC−△ scheme of rateR can attain any similarity threshold belowDLC−△

ID (R), with

DLC−△
ID (R) , E[ρ(X̂, Y )]− E[ρ(X, X̂)] = E[ρ(X̂, Y )]−D(R), (6)

whereE[ρ(X̂, Y )] is completely determined byPX̂ (induced by the lossy compressor) and
PY . Finally, let RLC−△

ID (D) be the inverse function ofDLC−△
ID (R), i.e., the compression

rate achieved for a similarity thresholdD.
As shown in [2], for binary symmetric sources and Hamming distortion, RID(D) =

RLC−△
ID (D), i.e., the scheme achieves the fundamental limit. However,the scheme is

suboptimal in general, in the sense thatRID(D) < RLC−△
ID (D).

IV. THE TC−△ SCHEME

A. Motivation

A closer look at (6) suggests the following intuitive idea: in the distortion rate case,
we wish to minimize the distortion with a constraint on the mutual information. The
optimization is with respect to the transition probabilityPX̂ |X . This is in agreement with

(6), as we also want to minimizeE[ρ(X, X̂)]. However, the quantityE[ρ(X̂, Y )] also
depends onPX̂ (determined byPX̂|X and PX). This suggests optimizing both terms
together. As shown in [2], this is possible, and the key is to use a type covering lemma
(TC) to generatêx (and not just the one that minimizes the distortion betweenX and
X̂). Specifically, any similarity threshold belowDTC−△

ID (R) can be attained by aTC−△
scheme of rateR, where

DTC−△
ID (D) , max

P
X̂|X :I(X;X̂)≤R

E[ρ(X̂, Y )]− E[ρ(X, X̂)]. (7)

As in the previous case, we denote byRTC−△
ID (D) the inverse function ofDTC−△

ID (R).
It is easy to see thatRTC−△

ID (D) ≤ RLC−△
ID (D). Furthermore, for memoryless binary

sources and Hamming distortionRTC−△
ID (D) = RID(D) and both are strictly lower than

RLC−△
ID (D) for non-symmetric sources, the difference being particularly pronounced at

low distortion, as shown in [2] (see Fig 2).
The question now is how to create a practicalTC−△ scheme that achievesRTC−△

ID (D),
which will imply that the scheme achieves a smaller compression rate that anLC −△
scheme, and that it is optimal for general binary sources andHamming distortion. While
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Fig. 2: Binary sources and Hamming distortion: ifPX = PY = Bern(0.5), RLC−△
ID (D) =

RTC−△
ID (D) = RID(D), whereas ifPX = PY = Bern(0.7), RLC−△

ID (D) > RTC−△
ID (D) =

RID(D).

creating a practical scheme that achievesRLC−△
ID (D) is straightforward, as shown in [4],

how to implement aTC −△ scheme is not clear in general. In this paper, we propose
a validTC−△ scheme, which we introduce next.

B. Description

Based on the previous results, for each sequencex in the database, we want to
generate a signature assignment from which we can reconstruct a sequencêx such that the
empirical distribution betweenx andx̂ is equal to the one associated with the solution to
the optimization problem (7). This will imply that the scheme attainsRTC−△

ID (D); which
is better thanRLC−△

ID (D), attained by the scheme proposed in [4], and even optimal for
memoryless binary sources and Hamming distortion.

We propose a practical scheme for this task based on lossy compression algorithms.
Specifically, we show that the desired distribution can be achieved by carefully choosing
the distortion to be applied by the lossy compressor. In other words, if

P ∗
X̂|X

= argmax
P
X̂|X :I(X;X̂)≤R

E[ρ(X̂, Y )]− E[ρ(X, X̂)], (8)

we are seeking a distortion measureρ∗(X, X̂) such that

P ∗
X̂|X

= argmin
P
X̂|X

:I(X;X̂)≤R

E[ρ∗(X, X̂)], (9)

i.e., the conditional probability induced by the lossy compressor is equal toP ∗
X̂|X

.

We show that (9) holds ifρ∗(X, X̂) = log 1
P ∗
X|X̂

, whereP ∗
X|X̂

is induced fromP ∗
X̂|X

andPX , andI(X ; X̂) = R. Note thatρ∗(X, X̂) is reminiscent of logarithmic loss [10].
This is based on the following lemma [11]:

Lemma 1:Let X ∼ PX , and letPX(x) > 0 for all x ∈ X . For a channelPX̂|X ,
let PX|X̂ be the reversed channel, and consider a rate distortion problem with distortion
measure

ρ(x, u) = log
1

PX|X̂(x|u)
. (10)
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Then, for the rate constraintI(X ;U) ≤ I(X ; X̂), the optimal test channelP ∗
U |X is

equal toPX̂|X .
Proof: First, note that

E[ρ(X,U)] =
∑

x,u

PX,U(x, u) log
1

PX|X̂(x|u)
(11)

=
∑

u

PU(u)D(PX|U(·|u)||PX|X̂(·|u)) +H(X|U), (12)

and that the rate constraint impliesH(X|U) ≥ H(X|X̂). Therefore,

E[ρ(X,U)] ≥
∑

u

PU(u)D(PX|U(·|u)||PX|X̂(·|u)) +H(X|X̂). (13)

Thus,
min

PU|X :I(X;U)≤I(X;X̂)
E[ρ(X,U)] = H(X|X̂), (14)

and the minimum is attained if and only ifPX|U = PX|X̂ .

Going back to our setting, note that the optimization problem (7) that solves for
RID(D)TC−△, has the constraintI(X, X̂) ≤ R. The maximizing probability (8) will
in general achieveI(X, X̂) = R, and thus we can apply the lemma.

Therefore, the proposedTC − △ scheme effectively employs for the signature as-
signment a good lossy compressor for distortion measureρ(x, x̂) = log 1

P ∗
X|X̂

(x|x̂)
, where

P ∗
X|X̂

is induced byP ∗
X̂|X

, given by (8), andPX . With an optimal lossy compressor, and

assumingI(X, X̂) = R, the joint type of the sequencesx and x̂ will be close toP ∗
X̂|X

,

which achievesRTC−△
ID , which is optimal for the case of general binary sources and

Hamming distortion. In the next section we show that the performance of the proposed
scheme approaches the fundamental performance limit, and performs notably better than
theLC−△ scheme.

V. SIMULATION RESULTS

In this section we examine the performance of both theLC − △ and theTC −
△ schemes. We consider datasets composed ofM binary sequences of lengthn, and
Hamming distortion for computing the similarity between sequences. We generate the
sequences in the database asX ∼

∏n

i=1 PX(xi), with PX = Bern(p). These sequences are
independent of the query sequences, generated asY ∼

∏n

i=1 PY (yi), with PY = Bern(q).
With these assumptions, for each sequencex(i) in the database,i ∈ [1 : M ], given its
signatureT (x(i)), we can compute the probability thatg(T (x(i)),y) = maybe (for a
similarity thresholdD), denoted byP (maybe|T (x(i))), analytically, with the following
formula:

P (maybe|T (x(i))) =

⌊n(d1+D)⌋
∑

d=⌈n(d0−D)⌉

d
∑

i=0

(

n0

i

)(

n− n0

d− i

)

qn−n0−d+2i(1− q)n0+d−2i, (15)

wheren0 denotes the number of zeros ofx̂(i), andd0 and d1 are the delimiters of the
decision region to whichd(x(i), x̂(i)) belongs. If no quantization is applied,d0 = d1 =
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d(x(i), x̂(i)). Finally, we compute the probability ofmaybe for the database as the average
over all the sequences it contains, i.e.,P (maybe) = 1

M

∑M

i=1 P (maybe|T (x(i))). Note that
we want this probability to be as small as possible.

Regarding the quantization ofd(x, x̂), we approximate the distribution ofd(X, X̂) as
a GaussianN (µ, σ2), whereµ andσ2 are computed empirically (for each rate). We then
use the k-means algorithm to find the2k decision regions (∆R = k/n, i.e., k bits are
allocated for the description of the quantized distortion). Thus, for each distortion, we
store only the decision region to which it belongs.

A. Binary symmetric sources and Hamming distortion

The performance of theLC−△ scheme in this setting was already discussed in [4].
Therefore, since theLC − △ and theTC − △ schemes are equivalent in this case,
the reader can refer to [4] for more extensive simulation results. We consider a dataset
composed ofM = 1000 binary sequences of lengthn = 512, with p = q = 0.5. As
the fixed-length lossy compression algorithm, we use a binary-Hamming version of the
successive refinement compression scheme [12].

Regarding the quantization ofd(x, x̂), there exists a tradeoff between the quantization
level and the probability ofmaybe. Fig. 3(a) shows the results for different quantization
levels (denoted byk) and a similarity thresholdD = 0.20 (i.e., 80% similarity). As
expected, no special value ofk performs better than the others for any overall compression
rateR. Therefore, in the subsequent figures the presented resultscorrespond to the best
value ofk for each rate. As it can be observed, we can reduce the size of the database
by 76% (R = 0.24) and retrieve on average1% of the sequences per query. With70%
reduction we can get aP (maybe) of 10−4 (on average one sequence every1000 is
retrieved). One can get even more compression with the sameP (maybe) for lower values
of D, as shown in [4]. For example,95% compression with a1% average retrieval is
achieved forD = 0.05.
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Fig. 3: Binary symmetric sequences and similarity threshold D = 0.2: (a) performance
of the proposed scheme with quantized distortion (b) comparisson with LSH for rate
R = 0.3.

Finally, we include a comparison with LSH [6]. We use the accepted family of functions
H = {hi, i ∈ [1 : n]}, with hi(x) = x(i), the ith coordinate ofx, and consider both the
AND-OR and the OR-AND constructions described in [6, Chapter 3]. Note that the
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Fig. 4: Performance of the proposed schemes for sequences oflengthn = 512, similarity
thresholdsD = {0.05, 0.1} andPX = PY = Bern(0.7) and Bern(0.8).

comparison is not completely fair, as LSH allows false negatives (fn’s), compresses the
query sequence, and its design is not optimized for the problem considered in this paper.
This is reflected in Fig. 3(b), where we show the achievable probabilities offn’s and
false positives (fp’s) for both schemes, considering the database introduced above and
rateR = 0.3. As can be observed, it is not possible to have both probabilities going to
zero at the same time, whereas the proposed scheme achieves for the same rate aP (fp)
close to10−4 with zerofn’s.

B. General binary sources and Hamming distortion

We compare the performance of theTC −△ andLC −△ schemes, assumingPX =
PY = Bern(p), with p 6= 0.5. For a fair comparison, we simulate both schemes with the
lossy compressor presented in [13], that allows to specify the distortion to be used. The
LC−△ scheme uses Hamming distortion, whereas theTC−△ scheme uses the distortion
measure given by (10), withPX|X̂ computed fromPX andPX̂|X as defined in (8) (for each
rate). Note that this distortion is to be used only by the lossy compressor. The decision rule
g(T (x),y) in both schemes still uses Hamming distortion to measure similarity between
sequences and the triangle inequality property for computing the decision threshold.

We show simulation results in Fig. 4 for a dataset composed ofM = 1000 sequences
of length n = 512, andPX = PY = Bern(0.7) and Bern(0.8). We also plot the three
rates (RID = RTC−△

ID < RLC−△
ID ) and an approximation for each scheme, computed as

follows. For a given rateR, the approximation for theLC −△ scheme assumesPX̂|X

is given asargminP
X̂|X

:I(X;X̂)≤R E[ρ(X, X̂)] (rate distortion optimization problem), with
ρ representing Hamming distortion. On the other hand, for theTC −△ scheme,PX̂|X

is assumed to be equal to (8). We then compute theP (maybe) of each scheme using
equation (15), withd0 = d1 = E[ρ(X, X̂)], with ρ representing Hamming distortion, and
n0 = nPX̂(x̂ = 0).

As can be observed, theTC−△ scheme performs better than theLC−△ scheme in
all cases, as is suggested by the theory. For example, forX, Y ∼ Bern(0.7), D = 0.05
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andR = 0.13 (87% compression), while theLC−△ scheme achievesP (maybe) = 10−4,
theTC −△ scheme achieves10−5. Similarly, for D = 0.1 andR = 0.2, theP (maybe)
decreases from10−3 to 10−4, i.e., on average it retrieves1 sequence every10000, instead
of every1000. For the caseX, Y ∼ Bern(0.8) we observe similar results. WithD = 0.05
(95% similarity) andP (maybe) = 10−2, theTC −△ scheme attains93% compression
(R = 0.07), whereas theLC−△ schemes achieves only84% compression (R = 0.16),
i.e., a reduction in rate of55%. Furthermore,R = 0.07 is close toRLC−△

ID . Similarly,
for D = 0.1 andP (maybe) = 10−4 the decrease in rate is from0.35 to 0.3 bits, which
represents an improvement in compression of14.2%. Finally, notice that for a given rate,
the smaller the similarity thresholdD, the smaller theP (maybe).

VI. CONCLUDING REMARKS

We investigated schemes for compressing a database so that similarity queries can
be performed efficiently on the compressed database. The fundamental limits for this
problem have been characterized in past work, and they serveas the basis for performance
evaluation.

Recently, we proposed a scheme for this task based on lossy compression algorithms
which was easy to analyze and implement. While its performance was shown to be close
to the fundamental limits in some cases (e.g., binary symmetric sources and Hamming
distortion), the scheme is suboptimal in general. In this paper we proposed a new scheme
that builds upon the previous one and achieves a better compression rate in many cases.
For example, for general memoryless binary sequences and Hamming distortion, our
suggested scheme exhibits on simulated data performance approaching the fundamental
limits, substantially improving over the previous scheme.The proposed scheme is also
based on lossy compression algorithms, but in this case we judiciously design the distor-
tion measure to be applied by the lossy compressor, a measurewhich is not Hamming
despite the fact that similarity for the query is measured under Hamming. Finally, as was
the case with the previously proposed scheme, the one proposed here is applicable to
any discrete database and similarity measure satisfying the triangle inequality.
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