
10/2/2019

1

Introduction to Information Theory

Part 4

A General Communication System

CHANNEL

• Information Source

• Transmitter

• Channel

• Receiver

• Destination
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Perfect Communication
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NOISE
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Motivating Noise…
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Motivating Noise…
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Motivating Noise…

8

Message: $5213.75
Received: $5293.75

1. Detect that an error has occurred.

2. Correct the error.

3. Watch out for the overhead.
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Error Detection by Repetition

In the presence of 20% noise…

Message           : $ 5 2 1 3 . 7 5

Transmission 1: $ 5 2 9 3 . 7 5
Transmission 2: $ 5 2 1 3 . 7 5
Transmission 3: $ 5 2 1 3 . 1 1
Transmission 4: $ 5 4 4 3 . 7 5
Transmission 5: $ 7 2 1 8 . 7 5

There is no way of knowing where the errors are.
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Error Detection by Repetition

In the presence of 20% noise…

Message           : $ 5 2 1 3 . 7 5
Transmission 1: $ 5 2 9 3 . 7 5
Transmission 2: $ 5 2 1 3 . 7 5
Transmission 3: $ 5 2 1 3 . 1 1
Transmission 4: $ 5 4 4 3 . 7 5
Transmission 5: $ 7 2 1 8 . 7 5
Most common: $ 5 2 1 3 . 7 5

1. Guesswork is involved.
2. There is overhead.
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Error Detection by Repetition

In the presence of 50% noise…

Message           : $ 5 2 1 3 . 7 5
…
Repeat 1000 times!

1. Guesswork is involved.
But it will almost never be wrong!

2. There is overhead.
A LOT of it!

10/2/2019 11

Binary Symmetric Channel (BSC)
(Discrete Memoryless Channel)
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Binary Symmetric Channel (BSC)
(Discrete Memoryless Channel)
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Defined by a set of conditional probabilities (aka transitional probabilities)

𝑝 𝑦 𝑥 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌
The probability of 𝑦 occurring at the output when 𝑥 is the input to the channel.
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A General Discrete Channel

𝑥1

𝑥2

𝑥𝑠

𝑦3

𝑦2

𝑦1

𝑦𝑟

p(𝑦1|𝑥1)

p(𝑦2|𝑥1)p(𝑦𝑟|𝑥1) p(𝑦3|𝑥1)

𝑠 input symbols 𝑟 output symbols

𝑠 × 𝑟 transition probabilities
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Channel With Internal Structure
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Channel

• A channel can be modeled using a probabilistic model of 
source and what was received.
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Conditional & Joint Entropy

• 𝑋 ,𝑌 random variables with entropy 𝐻(𝑋) and 𝐻 𝑌

• Conditional Entropy: Average entropy in 𝑌, given knowledge of 𝑋.

𝑯 𝒀 𝑿 = 

𝒙𝒊∈𝑿



𝒚𝒋∈𝒀

𝒑(𝒙𝒊, 𝒚𝒋) 𝒍𝒐𝒈
𝟏

𝒑(𝒚𝒋|𝒙𝒊)

where 𝑝 𝑥𝑖 , 𝑦𝑗 = 𝑝 𝑦𝑗 𝑥𝑖 𝑝 𝑥𝑖

• Joint Entropy: 𝑯 𝑿,𝒀 = 𝑯 𝒀 𝑿 +𝑯(𝑿)
Entropy of the pair (𝑋, 𝑌)
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Mutual Information

• The mutual information of a random variable 𝑋 given the 
random variable 𝑌 is

𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌

It is the information about 𝑋 transmitted by 𝑌.
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Mutual Information: Properties

• 𝐼(𝑋; 𝑌) = 𝐻(𝑋, 𝑌) – 𝐻(𝑋|𝑌) − 𝐻(𝑌|𝑋)

• 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌)

• 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)

• 𝐼(𝑋; 𝑌) is symmetric in 𝑋 and 𝑌

• 𝐼 𝑋; 𝑌 = σ𝑥σ𝑦 𝑝 𝑥, 𝑦 𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)

• 𝐼(𝑋; 𝑌) >= 0

• 𝐼(𝑋; 𝑋) = 𝐻(𝑋)
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Entropy Concepts

• 𝐼(𝑋; 𝑌) = 𝐻(𝑋, 𝑌) – 𝐻(𝑋|𝑌) −𝐻(𝑌|𝑋)
• 𝐼(𝑋; 𝑌) = 𝐻(𝑋) −𝐻(𝑋|𝑌)
• 𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋)
• 𝐼(𝑋; 𝑌) is symmetric in 𝑋 and 𝑌

• 𝐼 𝑋; 𝑌 = σ𝑥σ𝑦𝑝 𝑥, 𝑦 𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝 𝑥 𝑝(𝑦)

• 𝐼(𝑋; 𝑌) >= 0
• 𝐼(𝑋;𝑋) = 𝐻(𝑋)
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Channel Capacity

• What is the capacity of the channel?

• What is the reliability of communication across the channel?
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Channel Capacity

• What is the capacity of the channel?

• What is the reliability of communication across the channel?

• Defined Channel Capacity as the rate at which reliable 
communication is possible.

• Capacity is defined in terms of Mutual Information I(X, Y)

• Mutual Information is defined in terms of entropy of source H(X) 
and the joint entropy H(X, Y)

• Joint entropy is defined in terms of source entropy H(X) and the 
conditional entropy H(Y|X)

10/2/2019 22
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Channel Capacity

• The capacity of a channel is the maximum possible mutual 
information that can be achieved between input and output by 
varying the probabilities of the input symbols.

If X is the input channel and Y is the output, the capacity C is

𝒄 = 𝐦𝐚𝐱
𝒊𝒏𝒑𝒖𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔

𝑰(𝑿; 𝒀)
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Channel Capacity

𝒄 = 𝐦𝐚𝐱
𝒊𝒏𝒑𝒖𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔

𝑰(𝑿;𝒀)

Mutual information about X given Y is the information transmitted by 
the channel and depends on the probability structure

– Input probabilities

– Transition probabilities

– Output probabilities

10/2/2019 24
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Channel Capacity

𝒄 = 𝐦𝐚𝐱
𝒊𝒏𝒑𝒖𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔

𝑰(𝑿;𝒀)

Mutual information about X given Y is the information transmitted by 
the channel and depends on the probability structure

– Input probabilities

– Transition probabilities: fixed by properties of channel

– Output probabilities: determined by input and transition probabilities
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Channel Capacity

𝒄 = 𝐦𝐚𝐱
𝒊𝒏𝒑𝒖𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔

𝑰(𝑿;𝒀)

Mutual information about X given Y is the information transmitted by 
the channel and depends on the probability structure

– Input probabilities: can be adjusted by suitable coding

– Transition probabilities: fixed by properties of channel

– Output probabilities: determined by input and transition probabilities
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Channel Capacity

𝒄 = 𝐦𝐚𝐱
𝒊𝒏𝒑𝒖𝒕 𝒑𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒊𝒆𝒔

𝑰(𝑿; 𝒀)

Mutual information about X given Y is the information transmitted by the channel 
and depends on the probability structure

– Input probabilities: can be adjusted by suitable coding
– Transition probabilities: fixed by properties of channel
– Output probabilities: determined by input and transition probabilities

That is, input probabilities determine mutual information and can be varied by 
coding. The maximum mutual information with respect to these input probabilities 
is the channel capacity.
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Shannon’s Second Theorem

• Suppose a discrete channel has capacity C and the source has 
entropy H

If H < C there is a coding scheme such that the source can be 
transmitted  over the channel with an arbitrarily small 
frequency of error.

If H > C, it is not possible to achieve arbitrarily small error 
frequency.
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Detailed Communication Model
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Detailed Communication Model
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Standard compression
used to reduce inherent
redundancy.
resulting bitstream is
nearly random.
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Detailed Communication Model
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Next, resulting bitstream
is transformed by an error
correcting code- puts
redundancy back in but in
a systematic way.

Detailed Communication Model
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Error Correcting Codes

• Hamming Codes (1950)

• Linear Codes

• Low Density Parity Codes (1960)

• Convolutional Codes

• Turbo Codes (1993)
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Applications of Error Correcting Codes

• Satellite communications

• Spacecraft/space probe communications: Mariner 4 (1965), 
Voyager (1977-), Cassini (1990s), Mars Rovers (1997-)
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Applications of Error Correcting Codes

• Satellite communications

• Spacecraft/space probe communications: Mariner 4 (1965), 
Voyager (1977-), Cassini (1990s), Mars Rovers (1997-)

• CD and DVD Players, etc.

• Internet & Web communications (Ethernet, IP, IPv6, TCP, UDP, etc)

• Data storage

• ECC Memory (DRAM)

• Etc. etc. etc.
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Error Correcting Codes: Checksum

• ISBN: 0-691-12418-3

• 1*0+2*6+3*9+4*1+5*1+6*2+7*4+8*1+9*8
= 168 mod 11 = 3

• This is a staircase checksum
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ISBN Checksum Exercise

• For the 13-digit ISBN (e.g. 978-0-252-72546-3, for Shannon & 
Weaver’s The Mathematical Theory of Communication)

Each digit, from left to right, is alternately multiplied by 1 or 3, 
then those products are summed modulo 10 to give a value, R 
ranging from 0 to 9.
Checksum digit is 10 – R.

Thus, 978-0-19-955137-?
(Floridi’s Information: A Very Short Introduction)
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Information Channel is a General Model
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Information Channel is a General Model

Input
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Symptoms

or Test results
Diagnosis
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Information Channel is a General Model
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Geological Structure Presence
of oil deposits
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Information Channel is a General Model

Input
X

Channel
Output

Y
Opinion Poll Next President
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MTC: Summary

• Information

• Entropy

• Source Coding 
Theorem

• Redundancy

• Compression

• Huffman Encoding

• Lempel-Ziv Coding
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• Channel
• Conditional Entropy
• Joint Entropy
• Mutual Information
• Channel Capacity
• Shannon’s Second 

Theorem
• Error Correction 

Codes
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