Introduction to Information Theory

Part 3

Shannon's First Theorem

• By coding sequences of independent symbols (in S^n), it is possible to construct codes such that

$$\lim_{n\to\infty}\frac{L_n}{n}=\mathrm{H}$$

The price paid for such improvement is increased coding complexity (due to increased n) and increased delay in coding.

REVIEW...

9/25/2019

Entropy & Coding: Central Ideas

- Use short codes for highly likely events. This shortens the average length of coded messages.
- Code several events at a time. Provides greater flexibility in code design.
- Shannon's Source Coding Theorem
- Algorithms
- Applications

REVIEW...

9/25/2019 4

Source Coding

- Efficient codes
- Singular codes
- Nonsingular codes
- Instantaneous codes
- Universal Codes

Codes that do not require knowledge of probability distribution but act in the limit as if they did have the knowledge.

9/25/2019

REVIEW...

5

Huffman Codes

- Nonsingular
- Instantaneous
- Efficient
- Non-unique
- Powers of a source lead closer to H
- Requires knowledge of symbol probabilities

REVIEW...

9/25/2019

Entropy & Coding: Central Ideas

- Use short codes for highly likely events. This shortens the average length of coded messages.
- Code several events at a time. Provides greater flexibility in code design.
- Shannon's Source Coding Theorem
- Algorithms: Huffman Encoding, ...
- Applications: Compression...

REVIEW...

9/25/2019

xkcd(#936): Password Strength

THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

HARD

MEMORIZEO IT

9/25/2019

Some Observations

Successive symbols from a source are not always independent.
 E.g. in english,

h is more likely to occur following a t.

• This **intersymbol dependency** must be accounted for in an accurate measure of entropy.

9/25/2019

Lossless Compression: English Text

- · How much can we compress a given text?
- What is the accurate measure of entropy of English texts?
- Zeroth-Order entropy: *S*

$$H_0 \le \log\left(\frac{1}{27}\right)$$

$$\le 4.755 \, bits/letter$$

• First-Order Entropy: S^2

$$H_1 = 3.3$$

• Second-Order Entropy: S^3

$$H_2 = 3.1$$

9/25/2019 10

Zipf's Law, 1949

$$P_n \sim 1/n^a$$

 P_n is the frequency of occurrence of the n^{th} ranked item and a is close to 1.

- The most frequent word will occur approximately twice as often as the second most frequent word, three times as often as the third most frequent word, etc.
- For example, in a corpus of over 1 million words:

the 69,971 7% of 36.411 3.5% and 28,852 2.9%

For English text:

$$p_m = \frac{A}{m}$$

where m is the word's rank, p_m is the probability of the m^{th} rank word, A is a constant that depends on the number of active words in the language.

9/25/2019

1

The "Long Tail" of Moby Dick

9/25/2019

Estimating Entropy of English Text

• For English text, W with M words:

$$p_m = \frac{A}{m}$$

where m is the word's rank, p_m is the probability of the m^{th} rank word, A is a constant that depends on the number of active words in the language.

• If A = 0.1, so that

$$\sum_{m=1}^{M} p_m = 1$$

We need, M = 12,368.

$$H_W = \sum_{m=1}^{m=12,368} \frac{.1}{m} \log\left(\frac{m}{.1}\right) = 9.716391 \ bits/word$$

If \overline{w} =4.7 letters/word

$$H = \frac{9.716391}{4.7} = 2.067$$
 bits

9/25/2019 19

Shannon Redundancy

$$R = 1 - \frac{H}{log M}$$

Where H is the per letter entropy, M is the size of the source alphabet. Thus redundancy of English is

$$1 - \frac{2.067}{\log 27} = 56.5\%$$

With an entropy of 1.5 we get 67% redundancy.

I.e. Huffman coding (even with an entropy of 3.3 or 3.1) will not get close to the theoretical limit.

Can we achieve compression rates close to 33%???

9/25/2019 20

Lempel-Ziv Coding

- Sequences of text repeat patterns (words, phrases, etc)
- Construct a dictionary of common patterns
- Send references to patterns as triples (x, y, z)

9/25/2019

Lempel-Ziv Coding (LZ77)

Message Search Buffer Look-Ahead Buffer

THIS-THESIS-IS-THE-THESIS.

I	Me	SS	age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	1	HIS-THESIS-IS-THE-THESIS.

9/25/2019

Lempel-Ziv Coding (LZ77)

ı	Me	SS	age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	1	THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TI-	IIS-THESIS-IS-THE-THESIS.

1	Мe	SS	age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	T		THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н		THIS-THESIS-IS-THE-THESIS.
0	0	1	1	Т	HIS-THESIS-IS-THE-THESIS.

9/25/2019

Lempel-Ziv Coding (LZ77)

ſ	Vle	SS	age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т		THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	HIS-THESIS-IS-THE-THESIS.
0	0	1	1	TH	IS-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	S-THESIS-IS-THE-THESIS.

ı	Message			Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IS-THESIS-IS-THE-THESIS.
0	0	1	1	ТН	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS	THESIS-IS-THE-THESIS.

9/25/2019

Lempel-Ziv Coding (LZ77)

ſ	Иe	SS	age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	T	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IS-THESIS-IS-THE-THESIS.
0	0	1	1	ТНІ	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Е	E	THIS-THE	SIS-IS-THE-THESIS.

ı	Message			Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	тн	IS-THESIS-IS-THE-THESIS.
0	0	1	1	тні	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Ε	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	1	SI	THIS-THESI	S-IS-THE-THESIS.

9/25/2019

Lempel-Ziv Coding (LZ77)

ſ	Иe	SSa	age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IS-THESIS-IS-THE-THESIS.
0	0	1	1	THI	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Е	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	1	SI	THIS-THESI	S-IS-THE-THESIS.
7	2	1	S-I	THIS-THESIS-I	S-THE-THESIS.

ſ	Message			Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	тн	IS-THESIS-IS-THE-THESIS.
0	0	1	1	тні	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Ε	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	1	SI	THIS-THESI	S-IS-THE-THESIS.
7	2	1	S-I	THIS-THESIS-I	S-THE-THESIS.
10	5	-	S-THE-	THIS-THESIS-IS-THE-	THESIS.

9/25/2019

Lempel-Ziv Coding (LZ77)

Message			age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	ТН	IS-THESIS-IS-THE-THESIS.
0	0	1	1	тні	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Ε	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	1	SI	THIS-THESI	S-IS-THE-THESIS.
7	2	1	S-I	THIS-THESIS-I	S-THE-THESIS.
10	5	-	S-THE-	THIS-THESIS-IS-THE-	THESIS.
14	6		THESIS.	THIS-THESIS-IS-THE-THESIS.	

Lempel-Ziv Coding

- Sequences of text repeat patterns (words, phrases, etc)
- Construct a dictionary of common patterns
- Send references to patterns as triples (x, y, z)
 e.g. (5, 3, F)
 go back 5 received chars
 take the next 3 from there
 add F to the end
- Size of Search Buffer and Look-Ahead Buffer is finite.
- · Used by ZIP, PKSip, Lharc, PNG, gzip, ARJ
- Extended to LZ78 (uses dictionary), LZW (+Terry Welch)
- Achieves optimal rate of transmission in the long run w/o using probability dist.

9/25/2019

Decode

Message

Decode

Message

9/25/2019 4:

References

- Eugene Chiu, Jocelyn Lin, Brok Mcferron, Noshirwan Petigara, Satwiksai Seshasai: Mathematical Theory
 of Claude Shannon: A study of the style and context of his work up to the genesis of information theory.
 MIT 6.933J / STS.420J The Structure of Engineering Revolutions
- Luciano Floridi, 2010: Information: A Very Short Introduction, Oxford University Press, 2011.
- Luciano Floridi, 2011: The Philosophy of Information, Oxford University Press, 2011.
- James Gleick, 2011: The Information: A History, A Theory, A Flood, Pantheon Books, 2011.
- Zhandong Liu , Santosh S Venkatesh and Carlo C Maley, 2008: Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples, BMC Genomics 2008, 9:509
- David Luenberger, 2006: Information Science, Princeton University Press, 2006.
- David J.C. MacKay, 2003: Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.
- Claude Shannon & Warren Weaver, 1949: *The Mathematical Theory of Communication*, University of Illinois Press, 1949.
- W. N. Francis and H. Kucera: Brown University Standard Corpus of Present-Day American English, Brown University, 1967.
- Edward L. Glaeser: A Tale of Many Cities, New York Times, April 10, 2010. Available at: http://economix.blogs.nytimes.com/2010/04/20/a-tale-of-many-cities/
- Alan Rimm-Kaufman, The Long Tail of Search. Search Engine Land Website, September 18, 2007.
 Available at: http://searchengineland.com/the-long-tail-of-search-12198
- Deval Shah: Exploration of one of the most enigmatic mathematical law through lens of data science https://medium.com/@devalshah1619/a-mysterious-law-so-simple-and-yet-so-universal-aa9f1c8903d1

9/25/2019 42