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Definition of Information

» Information is quantified using probabilities.

> Given a finite set of possible messages, associate a probability with
each message.

» A message with low probability represents more information than
one with high probability.

Definition of Information:
1
I =log, (5) = —log,(p)

Where p is the probability of the message
Base 2 is used for the logarithm so I is measured in bits

Example: Information in a coin flip

1
P(HEADS) = -

1
[= —log, (E) = 1 bit
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Information Content
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Example: Text Analysis
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Example Text Analysis

Letter Freq. I

o.mzﬁ 3.95951

0.01147]  6.44597

0.05767_4.1161
0.00082_10.24909
0.00514_7.60474
0.03334 _4.90474
0.01959 _5.67385
0.05761 411743
0.06179 4.01654
001571 5.9922

0.00084 mzué
0.04973 _4.32981

0.07327] 3.77056
0.02201]  5.50592
0.00800  6.96640
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7
Informattion, I = log(1/p)
Some properties of |
1. I(p) =0
Information is non-negative.
2. 1(p1 *xp2) = 1(p1) + 1(p1)
Information we get from observing two independent events occurring is the sum of two information(s).
3. I(p) is monotonic and continuous in p
Slight changes in probability incur slight changes in information.
4 I(p=1)=0
We get zero information from an event whose probability is 1.
8
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Entropy

» Information (l) is associated with known events/messages that
have occurred.

» Entropy is a measure of information we expect to receive in
the future.

» It is the average information w.r.to all possible outcomes

Entropy

» Information (1) is associated with known events/messages that
have occurred.

» Entropy is a measure of information we expect to receive in
the future.

» It is the average information w.r.to all possible outcomes

1l + p2l; + p3lz + -+
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Definition of Entropy

» Information (l) is associated with known events/messages

» Entropy (H) is the average information w.r.to all possible
outcomes

1
HX=ZX10—
X) Xp gpx

> H is also measured in bits

11

Entropy (2 outcomes: p, 1 — p)

1 1
H(p) =plog <;> +(1—p)log(;— p)

0.8 A

0.6 A

Entropy

0.4 1

0.2 1
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Examples: Weather
* 2 event source: (Sunny, Cloudy)

7
Psunny = g
9
Pcioudy = §

* 3 —event source (Sunny, Cloudy, Precip)

Bryn Mawr: (207, 119, 39) Letus compute this

Example Text Analysis

Letter Freq. 1, h(pi)
a D.Oﬂlj 3.95951
b 0.01147) 6.44597|
c 0.02413| 5.37297
d 8
e
f
4
h
i
i
k

03338 _4.90474 Z 1
:Z;ﬁ% H(X) = Px logp— =4.047
0.06179_4.0165 *

p | 001571 59922 X

o |3 |3
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Entropy: Properties

0.8
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pp
HX) =0 H(X,) < log,(n) H(S,T) = H(S) + H(T)
Entropy is maximized if p is uniform. Additive Property

Entropy of S™

* Sisasource with kindependent events and H(S) = e
e.g.S=[H,T]
H,HTHTH,..
H(S)=1

* SZis a source consisting of two observations of events from S
e.g.S=[H,T]
TH, TT, HH, HH, TT, HT, ...

then, H(S?) = 2 H(S)

* Ingeneral,
H(S™) =nH(S)

16
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Entropy of things...
Entropy of English text is approx 1.5 bits/letter

Entropy of the human genome <= 2 bits

Entropy of a black hole is % of the area of the outer event horizon.

Value of information in economics is defined in terms of entropy.
E.g. Scarcity

V(X) = Zpi(—logb(pi))

bit versus bit - TwWo meanings

bit as measure of information/entropy

bit as a binary digit

e.g. 01001101 is six bits long

weather 01001101 8 days sunny/cloudy(0/1)
information is less than 8 bits

Information represented as decimal digits
log(10) = 3.32, thus the string 32767 has 6 * 3.32 = 19.92 bits of information

26 letter-alphabet has average information, log(26) = 4.7 bits

Bits needed to store n symbols matches entropy in bits only when all symbols are

equally likely and are mutually independent.
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So, what is Entropy good for???

* Provides the foundation for techniques for
— Compression
— Searching in data
— Encryption
— Correcting communication errors
— Extracting information from data
— Economic value of information
— Biological information
— Quantum information
— Etc.

Coding

* An information source, S has m events
* Thus, m symbols are to be transmitted: s4, 55, 3, ..., Sipy

10
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Coding

An information source, S has m events
Thus, m symbols are to be transmitted: s¢, s, S3, ..., Sy

A code is an assignment of codewords to source symbols
Codewords are made up of characters from a code alphabet

e.g. S = {SUNNY,PRECIP,RAINY}

SUNNY = 0
code alphabet = {0, 1} Code:  PRECP o1
RAINY - 010
Coding: Basics
* Events of an information — -
SOUICE: 51,52, -, Sy o
* A code is made up of
codewords from a code P
alphabet L
(e'g' {O/ l}l {‘I -}I etc') ) v__ . z )

11
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Coding: Basics

Block code: When all codes have the same
length. For example, ASCII, Unicode, etc.

Average Word Length:L = Z pili
i=1

Singular (not unique) codes
Nonsingular (unique) codes
instantaneous codes

Useless code!

Coding: Basics

Block code: When all codes have the same
length. For example, ASCII (I = 8).

m
Average Word Length:L = Z pili
i=1 Code length is important!

Si ngu lar (nOt uni g Ue) codes Short codewords preferred
to long ones.

Nonsingular (unique) codes
instantaneous codes

12
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Source Symbol Singular Code Nonsingular Code

A

B
C
D

Example Code

00
10
01
10

0
10
00
01

25

Source Symbol Singular Code Nonsingular Code

A

B
C
D

In practice, nonsingularity is not sufficient.

e.g.

Example Code

00
10
01
10

receiver gets: 0010

ADA?
CD?
AAB?

0
10
00
01

26

13
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Nonsingular, Instantaneous, Block Code

Source Symbol Nonsingular Code

A 00
B 01
C 10
D 10

e.g. receiver gets: 01101100

27

Comma Codes & Capital Codes

Source Symbol Capital Code

A 0 0
B 10 01
C 110 011
D 1110 0111

One of these is instantaneous.
e.g. receiver gets: 01011100

receiver gets: 00101110

28

14
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Example

| symbol |__p__| Codeword |

A 0.3 00
B 0.2 10
C 0.2 11
D 0.2 010
E 0.1 011

L=(03%2)+(02=2)+(02=2)+(02%3)+(01%3)=23

29

Example

|_symbol |__p__| Codeword |

A 0.3 00
B 0.2 10
C 0.2 11
D 0.2 010
E 0.1 011

L=(03%2)+(02=2)+(02=2)+(02%3)+(01%3)=23

1 1 1
H =031 (—) +021 (—) 34011 (—) ~ 2246
%%\03 %%\02/) " %01

30

15
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Example

| symbol |__p__| Codeword |

A

m O O @

0.3
0.2
0.2
0.2
0.1

00

10

11
010
011

? L=(03%2)+(02=2)+(02=2)+(02%3)+(01%3)=23

1 1 1
H =031 (—) +021 (—) +34011 (—) ~ 2246
C %%\03 %%\02 %01

Is there a relationship
between L and H?

31

Average Code Length & Entropy

* Average length bounds:

e Grouping n symbols together:

HS™) < L<H(E™M +1

H<L<H+1

32
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Average Code Length & Entropy

* Average length bounds: H<L<H+1
e Grouping n symbols together:

H(S™) <L < H(SY) + 1

nH(S) < L < nH(S) + 1

Average Code Length & Entropy

* Average length bounds: H<L<H+1
e Grouping n symbols together:

HS™M) <L<HE™+1 This is for instantaneous
binary codes.

nH(S) < L < nH(S) + 1

L
H(S) <~ < H(S) @

17



9/23/2019

Average Code Length & Entropy

* Average length bounds: H<L<H+1
e Grouping n symbols together:

HS™) <L<HE™M+1

nH(S) < L < nH(S) + 1 lim—==H

L 1 H is the entropy of source S
H(S) <—<H(S)+-— n is the length of symbol sequences
n n L, is the avg. length of codewords

Shannon’s First Theorem

* By coding sequences of independent symbols (in $™), it is
possible to construct codes such that

L

. 1!
lim—=H

n—-cw N

The price paid for such improvement is increased coding

complexity (due to increased n) and increased delay in coding.

18
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Question

* |Is there a coding algorithm that produces codes such that it
achieves Shannon limit?

L=H?

Yes!

Huffman’s algorithm (Huffman Coding) produces a code with

average length L as close as possible to source code entropy, H.

Data Compression: Huffman Coding

A 03
B 0.2
C 0.2
D 0.2
E 0.1

19
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Huffman Coding: Reduction Phase

A 03 0.3 0.6

B 0.2 0.3 0.4

C 0.2 0.2

D 0.2 0.2/

E 0.1 .
Huffman Coding: SplittingPhase

A 0300 0300 041 060

B 0.3 oo>/< 0.4 1

C | o3 01/

D

E 0.1 011

40

20



9/23/2019

Huffman Coding: SplittingPhase

0.4 1><0.6 0
/°0.3 007/ 04 1

A 0300—0300

D 02010 0211

|

E 01 011

H=2246
L=(03%2)+(02=2)+(02+2)+(02%3)+(01%3)=23

Huffman Coding: Text Compression
text — Compress —> compressed text

21
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Huffman Coding: Text Compression

text —

Compress — compressed text

text ——>

BADCA...

Build

frequency table —> Frequency Table

l

Build heap
(priority queue)
[Split]

00

10

11

010

Assign codes

[Reduce] —Code Table

Encode
[Compress]

——» compressed text

10000101100...

43
Text Compression
Letter Freq. 1, h(pi)
a o.osuj 3.95951]
b | 001147 6.44597
¢ . .
d
e
f
I
h
i
i
X 4
1| o.03338 40474 1
m 0.01959 5.6738! — - =
n o.ns7sj 4.11755‘ H(X) Px lng 4.047
o | 0.06179 4. x
P 0.01571] X
q
r
s
t
u
v
w
X
y
2
spc
44
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Huffman Coding: Text Compression

text — Compress —> compressed text

For English text with 27 characters (A, .., Z, SPC)

H(T) = log,(27) = 4.755

Instead of using 8-bit ASCII, we can encode using Huffman codes, with L <= 4.7 and get 50% compression.

In fact, Entropy of English texts is much less than 4, since all characters are not uniformly distributed.

In practice, compression rates of 60% are typical.

Other Coding Schemes

* Huffman Coding

* Lempel-Ziv (LZ77)
ZIP, PKSip, PNG, gzip, ...

* Lempel-Ziv (LZ78)

* Lempel-Ziv-Welch (LZW, 1984)
compress, GIF, PDF, etc.

* Prediction Methods
JPEG (lossless & lossy)

* Perceptual Coding
MPEG, MPEG1, MP3, etc.

46
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Entropy & Coding

* Use short codes for highly likely events. This shortens the
average length of coded messages.

* Code several events at a time. Provides greater flexibility in
code design.

47
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