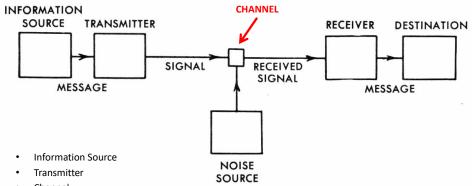
Introduction to Information Theory

Part 2

1

A General Communication System



- Channe
- Receiver
- Destination

Definition of Information

- ➤ Information is quantified using probabilities.
- Given a finite set of possible messages, associate a probability with each message.
- A message with low probability represents more information than one with high probability.

Definition of Information:

$$I = \log_2\left(\frac{1}{p}\right) = -\log_2(p)$$

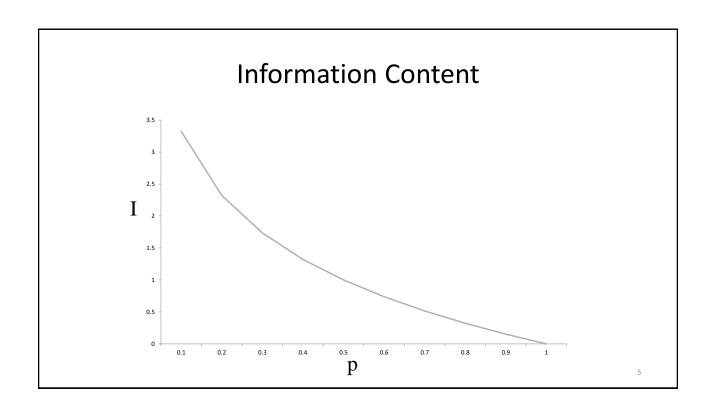
Where p is the probability of the message Base 2 is used for the logarithm so I is measured in **bits**

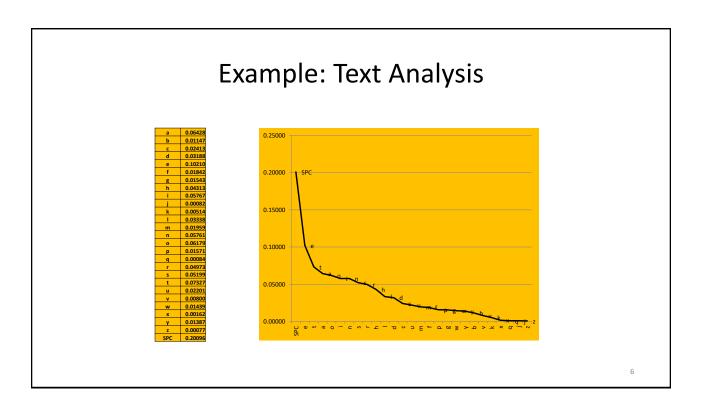
3

Example: Information in a coin flip

$$p(HEADS) = \frac{1}{2}$$

$$I = -\log_2\left(\frac{1}{2}\right) = 1$$
 bit





Example Text Analysis

Letter	Freq.	- 1
a	0.06428	3.95951
b	0.01147	6.44597
С	0.02413	5.37297
d	0.03188	4.97116
e	0.10210	3.29188
f	0.01842	5.76293
g	0.01543	6.01840
h	0.04313	4.53514
i	0.05767	4.11611
j	0.00082	10.24909
k	0.00514	7.60474
1	0.03338	4.90474
m	0.01959	5.67385
n	0.05761	4.11743
0	0.06179	4.01654
р	0.01571	5.99226
q	0.00084	10.21486
r	0.04973	4.32981
s	0.05199	4.26552
t	0.07327	3.77056
u	0.02201	5.50592
v	0.00800	6.96640
w	0.01439	6.11899
х	0.00162	9.26697
у	0.01387	6.17152
z	0.00077	10.34877
SPC	0.20096	2.31502

7

Informattion, $I = \log(1/p)$

Some properties of I

- 1. $I(p) \ge 0$ Information is non-negative.
- 2. $I(p_1*p_2)=I(p_1)+I(p_1)$ Information we get from observing two independent events occurring is the sum of two information(s).
- 3. I(p) is monotonic and continuous in p Slight changes in probability incur slight changes in information.
- 4. I(p=1)=0 We get zero information from an event whose probability is 1.

Q

Entropy

- ➤ Information (I) is associated with known events/messages that have occurred.
- ➤ Entropy is a measure of information we expect to receive in the future.
- > It is the average information w.r.to all possible outcomes

9

Entropy

- ➤ Information (I) is associated with known events/messages that have occurred.
- ➤ Entropy is a measure of information we expect to receive in the future.
- > It is the average information w.r.to all possible outcomes

$$p_1I_1 + p_2I_2 + p_3I_3 + \cdots$$

Definition of Entropy

- ➤ Information (I) is associated with known events/messages
- ➤ Entropy (H) is the average information w.r.to all possible outcomes

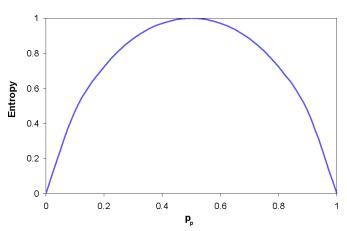
$$H(X) = \sum_{x} p_{x} \log \frac{1}{p_{x}}$$

> H is also measured in bits

11

Entropy (2 outcomes: p, 1 - p)

$$H(p) = p \log\left(\frac{1}{p}\right) + (1-p) \log\left(\frac{1}{1-p}\right)$$



Examples: Weather

• 2 event source: (Sunny, Cloudy)

$$p_{sunny} = \frac{7}{8}$$

$$p_{cloudy} = \frac{1}{8}$$

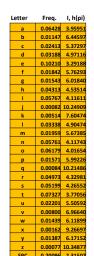
• 3 – event source (Sunny, Cloudy, Precip)

Bryn Mawr: (207, 119, 39)

Let us compute this.

13

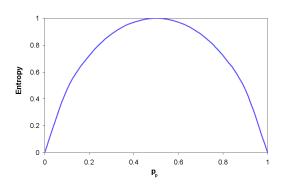
Example Text Analysis



$$H(X) = \sum_{x} p_x \log \frac{1}{p_x} = 4.047$$

1/1

Entropy: Properties



$$H(X) \ge 0$$
 $H(X_n) \le \log_2(n)$ $H(S,T) = H(S) + H(T)$ Entropy is maximized if p is uniform. Additive Property

15

Entropy of S^n

- S is a source with k independent events and H(S) = e e.g. S = [H, T]
 H, H, T, H, T, H, ...
 H(S) = 1
- S^2 is a source consisting of two observations of events from S e.g. S = [H, T] TH, TT, HH, HH, TT, HT, ... then, $H(S^2) = 2 \ H(S)$
- In general,

$$H(S^n) = n H(S)$$

Entropy of things...

- Entropy of English text is approx 1.5 bits/letter
- Entropy of the human genome <= 2 bits
- Entropy of a black hole is ¼ of the area of the outer event horizon.
- Value of information in economics is defined in terms of entropy.
 E.g. Scarcity

$$V(X) = \sum_{i=1}^{n} p_i(-\log_b(p_i))$$

17

bit versus bit - Two meanings

- bit as measure of information/entropy
- bit as a binary digit

e.g. 01001101 is six bits long

weather 01001101 8 days sunny/cloudy(0/1) information is less than 8 bits

Information represented as decimal digits log(10) = 3.32, thus the string 32767 has 6 * 3.32 = 19.92 bits of information

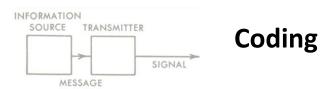
26 letter-alphabet has average information, log(26) = 4.7 bits

• Bits needed to store n symbols matches entropy in bits only when all symbols are equally likely and are mutually independent.

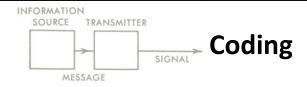
So, what is Entropy good for???

- Provides the foundation for techniques for
 - Compression
 - Searching in data
 - Encryption
 - Correcting communication errors
 - Extracting information from data
 - Economic value of information
 - Biological information
 - Quantum information
 - Etc.

19



- An information source, S has m events
- Thus, m symbols are to be transmitted: $s_1, s_2, s_3, \dots, s_m$



- An information source, S has m events
- Thus, m symbols are to be transmitted: $s_1, s_2, s_3, \dots, s_m$
- A code is an assignment of codewords to source symbols
- Codewords are made up of characters from a code alphabet

e.g.
$$S = \{SUNNY, PRECIP, RAINY\}$$

code alphabet = $\{0, 1\}$

Code: $\begin{pmatrix} SUNNY \rightarrow & 0 \\ PRECIP \rightarrow & 01 \\ RAINY \rightarrow & 010 \end{pmatrix}$

21

Coding: Basics

- Events of an information source: $s_1, s_2, ..., s_n$
- A code is made up of codewords from a code alphabet

A	В	С	D
Е	F	G	Н
1	- .	 •	
м	N	0	P
Q	R	S	т
U	· · · · ·	w	×
-	Y	z	-··-

Coding: Basics

- Block code: When all codes have the same length. For example, ASCII, Unicode, etc.
- Average Word Length: $L = \sum_{i=1}^{m} p_i l_i$
- Singular (not unique) codes
- Nonsingular (unique) codes
- instantaneous codes

23

Coding: Basics

- Block code: When all codes have the same length. For example, ASCII (l=8).
- Average Word Length: $L = \sum_{i=1}^{m} p_i l_i$

- Useless code! Singular (not unique) codes
 - Nonsingular (unique) codes
 - instantaneous codes

Code length is important!

Short codewords preferred to long ones.

Example Code

Source Symbol	Singular Code	Nonsingular Code
Α	00	0
В	10	10
С	01	00
D	10	01

25

Example Code

Source Symbol	Singular Code	Nonsingular Code
Α	00	0
В	10	10
С	01	00
D	10	01

In practice, nonsingularity is not sufficient.

e.g. receiver gets: 0010

ADA?

CD?

AAB?

Nonsingular, Instantaneous, Block Code

Source Symbol	Nonsingular Code
А	00
В	01
С	10
D	10

e.g. receiver gets: 01101100

2

Comma Codes & Capital Codes

Source Symbol	Comma Code	Capital Code
Α	0	0
В	10	01
С	110	011
D	1110	0111

One of these is instantaneous.

e.g. receiver gets: 01011100

receiver gets: 00101110

Example

Symbol	р	Codeword
А	0.3	00
В	0.2	10
С	0.2	11
D	0.2	010
Е	0.1	011

$$L = (0.3 * 2) + (0.2 * 2) + (0.2 * 2) + (0.2 * 3) + (0.1 * 3) = 2.3$$

29

Example

Symbol	р	Codeword
Α	0.3	00
В	0.2	10
С	0.2	11
D	0.2	010
E	0.1	011

$$L = (0.3 * 2) + (0.2 * 2) + (0.2 * 2) + (0.2 * 3) + (0.1 * 3) = 2.3$$

$$H = 0.3 \log \left(\frac{1}{0.3}\right) + 0.2 \log \left(\frac{1}{0.2}\right) * 3 + 0.1 \log \left(\frac{1}{0.1}\right) = 2.246$$

Example

Symbol	р	Codeword
А	0.3	00
В	0.2	10
С	0.2	11
D	0.2	010
Е	0.1	011

$$L = (0.3*2) + (0.2*2) + (0.2*2) + (0.2*3) + (0.1*3) = 2.3$$

$$\mathrm{H} = 0.3 \log \left(\frac{1}{0.3}\right) + 0.2 \log \left(\frac{1}{0.2}\right) * 3 + 0.1 \log \left(\frac{1}{0.1}\right) = 2.246$$

Is there a relationship between L and H?

31

Average Code Length & Entropy

- Average length bounds: $H \le L < H + 1$
- Grouping n symbols together:

$$H(S^n) \leq L \leq H(S^n) + 1$$

Average Code Length & Entropy

- Average length bounds: $H \le L < H + 1$
- Grouping n symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

$$nH(S) \le L < nH(S) + 1$$

33

Average Code Length & Entropy

- Average length bounds: $H \le L < H + 1$
- Grouping n symbols together:

$$H(S^n) \leq L \leq H(S^n) + 1$$

This is for instantaneous binary codes.

$$nH(S) \leq L \leq nH(S) + 1$$

$$H(S) \le \frac{L}{n} \le H(S) + \frac{1}{n}$$

2/1

Average Code Length & Entropy

- Average length bounds: $H \le L < H + 1$
- Grouping n symbols together:

$$H(S^n) \leq L \leq H(S^n) + 1$$

$$nH(S) \le L \le nH(S) + 1$$

$$H(S) \le \frac{L}{n} \le H(S) + \frac{1}{n}$$

$$\lim_{n\to\infty}\frac{L_n}{n}=H$$

H is the entropy of source S n is the length of symbol sequences L_n is the avg. length of codewords

31

Shannon's First Theorem

• By coding sequences of independent symbols (in S^n), it is possible to construct codes such that

$$\lim_{n\to\infty}\frac{L_n}{n}=H$$

The price paid for such improvement is increased coding complexity (due to increased n) and increased delay in coding.

Question

• Is there a **coding algorithm** that produces codes such that it achieves Shannon limit?

$$L = H$$
?

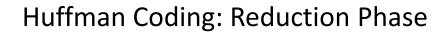
Yes!

Huffman's algorithm (**Huffman Coding**) produces a code with average length L as close as possible to source code entropy, H.

37

Data Compression: Huffman Coding

- A 0.3
- B 0.2
- C 0.2
- D 0.2
- E 0.1



A 0.3 _____0.6

B 0.2 0.3 / 0.4

C 0.2 / 0.2 / 0.3

D 0.2 / 0.2

E 0.1

20

Huffman Coding: SplittingPhase

A 0.3 00 — 0.3 00 0.4 1 0.6 0

B 0.2 10 0.3 01 0.3 00 0.4 1

C 0.2 11 0.2 10 0.3 01

D 0.2 010 0.2 11

E 0.1 011

Huffman Coding: SplittingPhase

C 0.2 11
$$\sqrt{0.2 \cdot 10^{1/}}$$
 0.3 01

H = 2.246

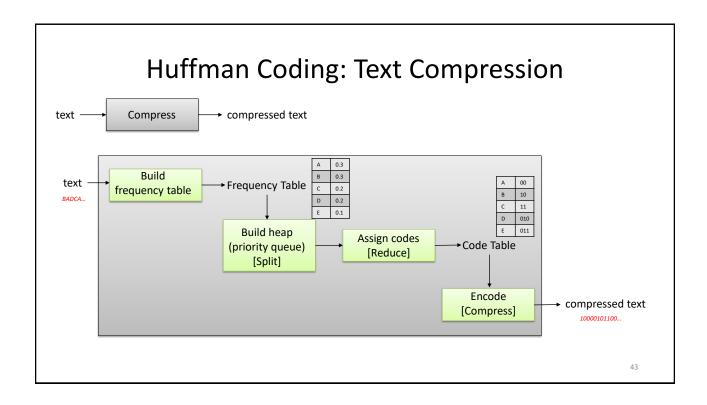
$$L = (0.3*2) + (0.2*2) + (0.2*2) + (0.2*3) + (0.1*3) = 2.3$$

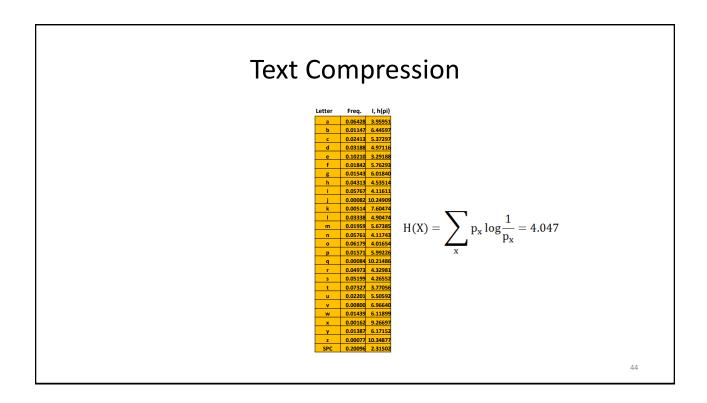
E 0.1 011

41

Huffman Coding: Text Compression







Huffman Coding: Text Compression

For English text with 27 characters (A, .., Z, SPC)

$$H(T) = log_2(27) = 4.755$$

Instead of using 8-bit ASCII, we can encode using Huffman codes, with L <= 4.7 and get 50% compression.

In fact, Entropy of English texts is much less than 4, since all characters are not uniformly distributed.

In practice, compression rates of 60% are typical.

45

Other Coding Schemes

- Huffman Coding
- Lempel-Ziv (LZ77) ZIP, PKSip, PNG, gzip, ...
- Lempel-Ziv (LZ78)
- Lempel-Ziv-Welch (LZW, 1984) compress, GIF, PDF, etc.
- Prediction Methods JPEG (lossless & lossy)
- Perceptual Coding MPEG, MPEG1, MP3, etc.

Entropy & Coding

- Use short codes for highly likely events. This shortens the average length of coded messages.
- Code several events at a time. Provides greater flexibility in code design.

47

References

- Eugene Chiu, Jocelyn Lin, Brok Mcferron, Noshirwan Petigara, Satwiksai Seshasai: Mathematical Theory of Claude Shannon: A study of the style and context of his work up to the genesis of information theory. MIT 6.933J / STS.420J The Structure of Engineering Revolutions
- Luciano Floridi, 2010: Information: A Very Short Introduction, Oxford University Press, 2011.
- Luciano Floridi, 2011: The Philosophy of Information, Oxford University Press, 2011.
- James Gleick, 2011: The Information: A History, A Theory, A Flood, Pantheon Books, 2011.
- Zhandong Liu , Santosh S Venkatesh and Carlo C Maley, 2008: Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples, BMC Genomics 2008, 9:509
- David Luenberger, 2006: *Information Science*, Princeton University Press, 2006.
- David J.C. MacKay, 2003: Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.
- Claude Shannon & Warren Weaver, 1949: The Mathematical Theory of Communication, University of Illinois Press, 1949.
- W. N. Francis and H. Kucera: Brown University Standard Corpus of Present-Day American English, Brown University, 1967.