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Introduction to 
Information Theory

Part 2

1

A General Communication System

CHANNEL

• Information Source

• Transmitter

• Channel

• Receiver

• Destination
2
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Definition of Information

 Information is quantified using probabilities.

 Given a finite set of possible messages, associate a probability with 
each message.

 A message with low probability represents more information than 
one with high probability.

Definition of Information:

Where p is the probability of the message

Base 2 is used for the logarithm so I is measured in bits

3

Example: Information in a coin flip

4
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Information Content
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Example: Text Analysis
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a 0.06428

b 0.01147

c 0.02413

d 0.03188

e 0.10210

f 0.01842

g 0.01543

h 0.04313

i 0.05767

j 0.00082

k 0.00514

l 0.03338

m 0.01959

n 0.05761

o 0.06179

p 0.01571

q 0.00084

r 0.04973

s 0.05199

t 0.07327

u 0.02201

v 0.00800

w 0.01439

x 0.00162

y 0.01387

z 0.00077

SPC 0.20096
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Example Text Analysis

Letter          Freq.       I

7

a 0.06428 3.95951

b 0.01147 6.44597

c 0.02413 5.37297

d 0.03188 4.97116

e 0.10210 3.29188

f 0.01842 5.76293

g 0.01543 6.01840

h 0.04313 4.53514

i 0.05767 4.11611

j 0.00082 10.24909

k 0.00514 7.60474

l 0.03338 4.90474

m 0.01959 5.67385

n 0.05761 4.11743

o 0.06179 4.01654

p 0.01571 5.99226

q 0.00084 10.21486

r 0.04973 4.32981

s 0.05199 4.26552

t 0.07327 3.77056

u 0.02201 5.50592

v 0.00800 6.96640

w 0.01439 6.11899

x 0.00162 9.26697

y 0.01387 6.17152

z 0.00077 10.34877

SPC 0.20096 2.31502

Informattion, 𝐼 = log(1/𝑝)
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Some properties of 𝐼

1. 𝐼 𝑝 ≥ 0
Information is non-negative.

2. 𝐼 𝑝1 ∗ 𝑝2 = 𝐼 𝑝1 + 𝐼 𝑝1
Information we get from observing two independent events occurring is the sum of two information(s).

3. 𝐼 𝑝 is monotonic and continuous in 𝑝
Slight changes in probability incur slight changes in information.

4. 𝐼 𝑝 = 1 = 0
We get zero information from an event whose probability is 1.
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Entropy

Information (I) is associated with known events/messages that 
have occurred.

Entropy is a measure of information we expect to receive in 
the future.

It is the average information w.r.to all possible outcomes

9

Entropy

Information (I) is associated with known events/messages that 
have occurred.

Entropy is a measure of information we expect to receive in 
the future.

It is the average information w.r.to all possible outcomes

𝑝1𝐼1 + 𝑝2𝐼2 + 𝑝3𝐼3 +⋯

10
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Definition of Entropy

Information (I) is associated with known events/messages

Entropy (H) is the average information w.r.to all possible 
outcomes

H is also measured in bits

11

Entropy (2 outcomes: 𝒑, 𝟏 − 𝒑)

12

𝐻 𝑝 = 𝑝 log
1

𝑝
+ 1 − 𝑝 log(

1

1 − 𝑝
)
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Examples: Weather

• 2 event source: (Sunny, Cloudy)

𝑝𝑠𝑢𝑛𝑛𝑦 =
7

8

𝑝𝑐𝑙𝑜𝑢𝑑𝑦 =
1

8

• 3 – event source (Sunny, Cloudy, Precip)

Bryn Mawr: (207, 119, 39)

13

Let us compute this.

Example Text Analysis
Letter          Freq.       I, h(pi)

14

a 0.06428 3.95951

b 0.01147 6.44597

c 0.02413 5.37297

d 0.03188 4.97116

e 0.10210 3.29188

f 0.01842 5.76293

g 0.01543 6.01840

h 0.04313 4.53514

i 0.05767 4.11611

j 0.00082 10.24909

k 0.00514 7.60474

l 0.03338 4.90474

m 0.01959 5.67385

n 0.05761 4.11743

o 0.06179 4.01654

p 0.01571 5.99226

q 0.00084 10.21486

r 0.04973 4.32981

s 0.05199 4.26552

t 0.07327 3.77056

u 0.02201 5.50592

v 0.00800 6.96640

w 0.01439 6.11899

x 0.00162 9.26697

y 0.01387 6.17152

z 0.00077 10.34877

SPC 0.20096 2.31502
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Entropy: Properties

Entropy is maximized if p is uniform.

15

Additive Property

Entropy of 𝑆𝑛

• S is a source with k independent events and H(S) = e
e.g. S = [H, T]
H, H, T, H, T, H, …
H(S) = 1

• 𝑆2is a source consisting of two observations of events from S
e.g. S = [H, T]
TH, TT, HH, HH, TT, HT, …

then, 𝐻 𝑆2 = 2 𝐻 𝑆

• In general,
𝐻 𝑆𝑛 = 𝑛 𝐻(𝑆)

16
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Entropy of things…

• Entropy of English text is approx 1.5 bits/letter

• Entropy of the human genome <= 2 bits

• Entropy of a black hole is ¼ of the area of the outer event horizon.

• Value of information in economics is defined in terms of entropy. 
E.g. Scarcity

17

bit versus bit - Two meanings

• bit as measure of information/entropy
• bit as a binary digit

e.g. 01001101 is six bits long
weather 01001101 8 days sunny/cloudy(0/1)

information is less than 8 bits

Information represented as decimal digits
log(10) = 3.32, thus the string 32767 has 6 * 3.32 = 19.92 bits of information

26 letter-alphabet has average information, log(26) = 4.7 bits

• Bits needed to store n symbols matches entropy in bits only when all symbols are 
equally likely and are mutually independent.

18
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So, what is Entropy good for???

• Provides the foundation for techniques for
– Compression

– Searching in data

– Encryption

– Correcting communication errors

– Extracting information from data

– Economic value of information

– Biological information

– Quantum information

– Etc.

19

Coding

• An information source, 𝑆 has 𝑚 events

• Thus, 𝑚 symbols are to be transmitted: 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑚

20
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Coding

• An information source, 𝑆 has 𝑚 events
• Thus, 𝑚 symbols are to be transmitted: 𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑚

• A code is an assignment of codewords to source symbols
• Codewords are made up of characters from a code alphabet

e.g. 𝑆 = 𝑆𝑈𝑁𝑁𝑌, 𝑃𝑅𝐸𝐶𝐼𝑃, 𝑅𝐴𝐼𝑁𝑌

code alphabet = {0, 1}

21

SUNNY → 0

PRECIP → 01

RAINY → 010

Code:

Coding: Basics

• Events of an information 
source:

• A code is made up of 
codewords from a code 
alphabet
(e.g. {0, 1}, {., -}, etc.)

22
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Coding: Basics

• Block code: When all codes have the same 
length. For example, ASCII, Unicode, etc.

• Average Word Length:

• Singular (not unique) codes

• Nonsingular (unique) codes

• instantaneous codes

23

Coding: Basics

• Block code: When all codes have the same 
length. For example, ASCII (𝑙 = 8).

• Average Word Length:

• Singular (not unique) codes

• Nonsingular (unique) codes

• instantaneous codes

24

Code length is important!

Short codewords preferred
to long ones.

Useless code!



9/18/2019

13

Example Code

25

Source Symbol Singular Code Nonsingular Code

A 00 0

B 10 10

C 01 00

D 10 01

Example Code

26

Source Symbol Singular Code Nonsingular Code

A 00 0

B 10 10

C 01 00

D 10 01

In practice, nonsingularity is not sufficient.

e.g. receiver gets: 0010

ADA?
CD?
AAB?
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Nonsingular, Instantaneous, Block Code

27

Source Symbol Nonsingular Code

A 00

B 01

C 10

D 10

e.g. receiver gets: 01101100

Comma Codes & Capital Codes

28

Source Symbol Comma Code Capital Code

A 0 0

B 10 01

C 110 011

D 1110 0111

One of these is instantaneous.

e.g. receiver gets: 01011100

receiver gets: 00101110
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Example

Symbol p Codeword

A 0.3 00

B 0.2 10

C 0.2 11

D 0.2 010

E 0.1 011

29

Example

Symbol p Codeword

A 0.3 00

B 0.2 10

C 0.2 11

D 0.2 010

E 0.1 011

30
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Example

Symbol p Codeword

A 0.3 00

B 0.2 10

C 0.2 11

D 0.2 010

E 0.1 011

31

Is there a relationship
between L and H?

Average Code Length & Entropy

• Average length bounds:

• Grouping n symbols together: 

32

𝐻 𝑆𝑛 ≤ 𝐿 ≤ 𝐻 𝑆𝑛 + 1
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Average Code Length & Entropy

• Average length bounds:

• Grouping n symbols together: 

33

Average Code Length & Entropy

• Average length bounds:

• Grouping n symbols together: 

34

𝐻 𝑆𝑛 ≤ 𝐿 ≤ 𝐻 𝑆𝑛 + 1

𝑛𝐻(𝑆) ≤ 𝐿 ≤ 𝑛𝐻(𝑆) + 1

𝐻(𝑆) ≤
𝐿

𝑛
≤ 𝐻(𝑆) +

1

𝑛

This is for instantaneous
binary codes.
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Average Code Length & Entropy

• Average length bounds:

• Grouping n symbols together: 

35

H is the entropy of source S
n is the length of symbol sequences

is the avg. length of codewords

𝐻 𝑆𝑛 ≤ 𝐿 ≤ 𝐻 𝑆𝑛 + 1

𝑛𝐻(𝑆) ≤ 𝐿 ≤ 𝑛𝐻(𝑆) + 1

𝐻(𝑆) ≤
𝐿

𝑛
≤ 𝐻(𝑆) +

1

𝑛

Shannon’s First Theorem

• By coding sequences of independent symbols (in 𝑆𝑛), it is 
possible to construct codes such that

The price paid for such improvement is increased coding 
complexity (due to increased n) and increased delay in coding.

36
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Question

• Is there a coding algorithm that produces codes such that it 
achieves Shannon limit?

L = H?

Yes!

Huffman’s algorithm (Huffman Coding) produces a code with 
average length L as close as possible to source code entropy, H.
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