First, a quick review...
The General Definition of Information

Information = Data + Meaning

General Definition of a Datum

\[D_d = \text{def} x \text{ being distinct from } y \]

where the \(x \) and \(y \) are two un-interpreted variables and the domain is left open to further interpretation.

Common/Useful Representations of Data

- Analog
- Discrete (digital)
- Binary (y’all know what that is...)
Types of Data

- **Primary**
 (raw data in a database, or a table, ...)
- **Secondary**
 (converse of primary data, stuff that is missing...)
- **Metadata**
 (data about data, location, format, copyright,...)
- **Operational**
 (data about the operation of a data system...)
- **Derivative**
 (data extracted from other data, as in mining...)

The General Definition of Information

Definition: σ is in instance of information, understood as semantic content, if and only if:

1) σ consists of n data, for $n \geq 1$;

2) The data are well-formed;

3) The well-formed data are meaningful.
Information: A Taxonomy

Information: Other Perspectives
Three Types of Information

- **Syntactic Information**
 Related to symbols from which messages are formed, and to their interrelations (structural)

- **Semantic Information**
 Related to the meaning of messages...

- **Pragmatic Information**
 Related to the usage and effect of messages

Example

I. John was brought to the railway station by taxi.
II. The taxi brought John to the railway station.
III. There is a traffic jam on highway A3, between Nuremberg and Munich in Germany.
IV. There is a traffic jam on highway A3 in Germany.
Example

I. John was brought to the railway station by taxi.
II. The taxi brought John to the railway station.
III. There is a traffic jam on highway A3, between Nuremberg and Munich in Germany.
IV. There is a traffic jam on highway A3 in Germany.

Syntactically different, but semantically and pragmatically identical.

Same meaning and equally informative.

Differ in syntax.

Also semantics: III gives more precise information than IV.

Pragmatic aspect of information depends on context.
Three Types of Information

• **Syntactic Information**
 Related to symbols from which messages are formed, and to their interrelations (structural)

• **Semantic Information**
 related to the meaning of messages...

• **Pragmatic Information**
 Related to the usage and effect of messages
Two Traditions...

- Concerned primarily with semantic & pragmatic aspects of information.

- Concerned with syntactic aspects of information:
 - How do you measure syntactic information?
 - Limits on the amount of information which can be transmitted?
 - Limits on compression of information?
 - How to build information processing systems approaching these limits?

Classical Information Theory

- Concerned with syntactic aspects of information:
 - How do you measure syntactic information?
 - Limits on the amount of information which can be transmitted?
 - Limits on compression of information?
 - How to build information processing systems approaching these limits?

Classical Information Theory

- Concerned with syntactic aspects of information:
 - How do you measure syntactic information?
 Answer: Entropy, H.
 - Limits on the amount of information which can be transmitted?
 Answer: Channel Capacity, C
 - Limits on compression of information?
 Answer: Entropy, H.
 - How to build information processing systems approaching these limits?
 Answer: Fo’ real!

Relationship with Other Fields

Kolmogorov Complexity

• Defined a notion of *algorithmic complexity* of an entity (number, message, object,...)

 The simpler an object is the less information it conveys...

• Complexity of an object is the size (in bits) of the smallest computer program needed to generate it.

Kolmogorov Complexity: Simple example

• Example 1:

 142857142857142857142857142857142857142857142857...

 Program:

  ```python
  while True:
    print("142857", end="")
  ```

 Or

  ```
  // compute and print 1/7
  ```
Kolmogorov Complexity: Simple example

- Example1:

1013

This message has more information...

...we’ll return to this later.

Floridi’s Roadmap

- **Mathematical Information**
 Information Theory
- **Semantic Information**
- **Physical Information**
 Universe is fundamentally composed of data, instead of matter or energy, with material objects as a complex secondary manifestation.
- **Biological Information**
 Genetic Information, Neural Information, Computational Neuroscience, ...
- **Economic Information**
 Commodity of information, value of information, game theory, ...
- **Ethics of Information**

Five Fundamentals of Information

- **Entropy**
 Information Theory, bits, bandwidth, codes, ...

- **Economics**
 Strategies for value: how information is produced, priced, and distributed, ...

- **Encryption**
 Secure transmission, digital signatures, digital cash, ...

- **Extraction**
 Data organization, storage, extraction, etc...

- **Emission**
 Frequency, modulation, radio, TV, phones, networks, ...

Towards a Science of Information

- Information Theory needs to meet new challenges of current applications in biology, communication, knowledge extraction, economics, ...

- Understand new aspects of information in structure, time, space, and semantics.

- PLUS...dynamic information, limited resources, complexity, representation-invariant information, and cooperation & dependency
Some Challenges...

• **Structure**
 Measures are needed for quantifying information embodied in structures (e.g., information in material structures, nanostructures, biomolecules, gene regulatory networks, protein networks, social networks, financial transactions).

• **Time**
 Delay (e.g., information arriving late may be useless or has less value).

• **Semantics**
 Is there a way to account for the meaning or semantics of information?

• **Knowledge Extraction**
 Data driven science focuses on extracting information from data. How much information can actually be extracted from a given data repository? How?
Science of Information

Emerging Frontiers of SoI

<table>
<thead>
<tr>
<th>Information Theory & Communications</th>
<th>Biology</th>
<th>Knowledge Extraction</th>
<th>Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditional</td>
<td>Quantum</td>
<td>Molecular</td>
<td>Neuroscience</td>
</tr>
<tr>
<td>Fundamentals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semantics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Our Sol Roadmap

• Foundations of Information Theory
 Entropy, codes, compression, channels, ...

• Communications
 Voice, data, ...

• Biological Information
 Bioinformatics, proteomics, epidemiology, neuroscience, ...

• Information Extraction
 Big data, storage, processing, IR, indexing, search engines, visualization, ...

• Economic Information
 Dynamic economic theory, behavior of continuously optimizing agents in markets, ...

• Quantum Information
Towards Information Theory: Communication

- Cooke & Wheatstone Telegraph (early 1800s) - point-to-point system

Birth announcement of Alfred Albert, second son of Queen Victoria

August 6, 1844

Birth was announced to The Times of London by telegraph.

The Times published it within 40 minutes.

Towards Information Theory: Communication

- Cooke & Wheatstone Telegraph (early 1800s) - point-to-point system

John Towell, January 1, 1845, murdered Sarah Hart.

Message:

A MURDER HAS GUST BEEN COMMITTED AT SALT HILL AND THE SUSPECTED MURDERER WAS SEEN TO TAKE A FIRST CLASS TICKET TO LONDON BY THE TRAIN WHICH LEFT SLOUGH AT 742 PM HE IS IN THE GARB OF A KWAKER WITH A GREAT COAT ON WHICH REACHES NEARLY DOWN TO HIS FEET HE IS IN THE LAST COMPARTMENT OF THE SECOND CLASS COMPARTMENT

Message enabled arrest. Widely publicized and brought the concept of Telegraph into public awareness.
Samuel Morse & Alfred Vail Telegraph

- Single Wire
- Point-to-point
- First message sent over two-miles in 1838
- In 1844, message sent over 44 miles from Washington to Baltimore.
- Devised and used Morse Code

Morse Code

- Short codes for common letters, longer codes for less common letters
- Sounds: Click here

International Morse Code

1. The length of a dot is one unit.
2. A dash is three units.
3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.
Theory of Point-to-point Communication

Next,

Fundamentals of Information Theory