Introduction to Molecular Biology

Part 2

DNA & RNA: Flow of Information

aka "The Central Dogma"!!

DNA to RNA to Protein

A gene is expressed in two steps

- 1. Transcription: RNA Synthesis
- 2. Translation: Protein Synthesis

The Code Book

- DNA, RNA, and Proteins are examples of strings written in either the four-letter nucleotide of DNA and RNA (A C G T/U)
- or the twenty-letter amino acid of proteins. Each amino acid is coded by 3 nucleotides called codons

DNA & RNA

- DNA = Deoxyribonucleic acid
- RNA = Ribonucleic acid
- They are almost the same...
- There is no T base in RNA
- A similar base U takes its place
- An oxygen atom is added to the sugar component of RNA

DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT

ATG GCG CCG ATA ATG ACG GTC CTT CCT TGA

DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT

DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT

RNA: AUG GCG CCG AUA AUG ACG GUC CUU CCU UGA

DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT

RNA: AUG GCG CCG AUA AUG ACG GUC CUU CCU UGA

Protein: Met Ala Pro Ile Met Thr Val Leu Pro Stop

DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT

RNA: AUG GCG CCG AUA AUG ACG GUC CUU CCU UGA

Protein: Met Ala Pro Ile Met Thr Val Leu Pro Stop

DNA to RNA to Protein

A gene is expressed in two steps

- 1. Transcription: RNA Synthesis
- 2. Translation: Protein Synthesis

Transcription

DNA to RNA to Protein

Splicing

Terminology

- **Codon:** The sequence of 3 nucleotides in DNA/RNA that encodes for a specific amino acid.
- mRNA (messenger RNA): A ribonucleic acid whose sequence is complementary to that of a protein-coding gene in DNA.
- Ribosome: The organelle that synthesizes polypeptides under the direction of mRNA
- **rRNA (ribosomal RNA):**The RNA molecules that constitute the bulk of the ribosome and provides structural scaffolding for the ribosome and catalyzes peptide bond formation.
- tRNA (transfer RNA): The small L-shaped RNAs that deliver specific amino acids to ribosomes according to the sequence of a bound mRNA.

Revisiting the Central Dogma

- In going from DNA to proteins, there is an intermediate step where mRNA is made from DNA, which then makes protein
- Why the intermediate step?
 - DNA is kept in the nucleus, while protein synthesis happens in the cytoplasm, with the help of ribosomes

10/11/2012

Proteins

- Proteins do all essential work for the cell
 - build cellular structures
 - digest nutrients
 - execute metabolic functions
 - Mediate information flow within a cell and among cellular communities.
- Proteins are often enzymes that catalyze reactions.
- Also called "poly-peptides"

Polypeptide vs Protein

- A protein is a polypeptide, however to understand the function of a protein given only the polypeptide sequence is a very difficult problem.
- Protein folding is an open problem. The 3D structure depends on many variables.
- Current approaches often work by looking at the structure of homologous (similar) proteins.
- Improper folding of a protein is believed to be the cause of mad cow disease.

Protein Folding

- Proteins are not linear structures, though they are built that way
- The amino acids have very different chemical properties;
 they interact with each other after the protein is built
 - This causes the protein to fold and adopt it's functional structure
 - Proteins may fold in reaction to some ions, and several separate chains of peptides may join together through their hydrophobic and hydrophilic amino acids to form a polymer

Protein Folding

- The structure that a protein adopts is vital to it's chemistry
- Its structure determines which of its amino acids are exposed to carry out the protein's function
- Its structure also determines what substrates it can react with

DNA: TAC CGC GGC TAT TAC TGC CAG GAA GGA ACT

RNA: AUG GCG CCG AUA AUG ACG GUC CUU CCU UGA

Protein: Met Ala Pro Ile Met Thr Val Leu Pro Stop

Bioinformatics

Sequence Analysis

- Sequence Databases (e.g. GenBank)
 Primary (raw sequence data), secondary (biological knowledge)
- Sequence Alignment (global, local, multiple)
 Needed for structural, functional, and evolutionary inferences. Motifs, domains...
- Gene & Promoter Prediction open reading frames, exons, introns, ...
- Molecular Phylogenetics
 Evolutionary history of living organisms, phylogenic tree construction, ...

Structural Bioinformatics

Protein Structure

Protein functions are determined by their structure Databases, Visualization, Classification

Protein Structure Prediction

Protein Structure Comparison

RNA Structure Prediction

Genomics & Proteomics

Structural Genomics

Genome mapping, sequence, assembly, annotation, comparison

Functional Genomics

Gene expression

Proteomics

Entire set of expressed proteins in a cell

Computation

- Exhaustive Search regulatory motifs in DNA, profiles
- Greedy Algorithms genome rearrangements, motif search
- Dynamic Programming Algorithms
 DNA sequence comparison, alignment, gene prediction
- **Divide-and-Conquer Algorithms** sequence alignment
- Graph Algorithms
 DNA sequencing, fragment assembly, peptide sequencing
- Combinatorial Pattern Matching similarity search, database searches
- Clustering and Trees gene expression analysis, tree construction
- Hidden Markov Models profile alignment
- Randomized Algorithms
- Machine Learning

Molecular Biology: Challenges

How does the structure and function at the molecular level account for the hierarchy?

- Molecular
- Intracellular
- Intercellular
- Tissue
- Organism
- Communities

References

- Neil C. Jones and Pavel A. Pevzner, An Introduction to Bioinformatics Algorithms, MIT Press 2004.
- Adapted from slides posted at the web site of the above book.
- Francis Crick, *Central Dogma of Molecular Biology*, Nature, Volume 227, August 1970.
- Luciano Floridi, *Information: A Very Short Introduction*, Oxford 2010.