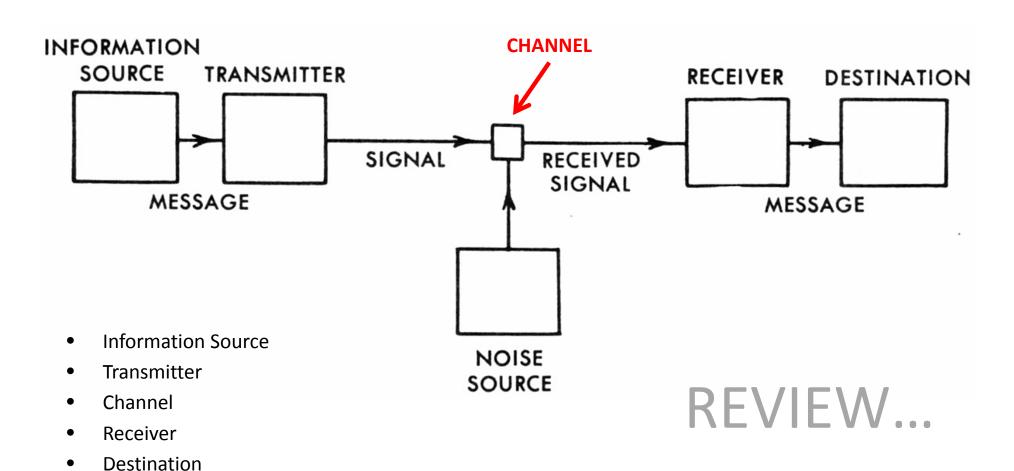
Introduction to Information Theory

Part 3


Assignment#1 Results

- List text(s) used, total # letters, computed entropy of text. Compare results.
- What is the computed average word length of 3-letter codes on

$$S = \{A, B\}, P = \{0.75, 0.25\}$$

Compare results.

A General Communication System

Information Source

Definition of Information:

$$I(p) = \log\left(\frac{1}{p}\right) = -\log(p)$$

- > Information (I) is associated with known events/messages
- \triangleright **Entropy** (*H*) is the average information w.r.to all possible outcomes.

Given,
$$P = \{p_1, p_2, ..., p_3\}$$

$$H(P) = \sum_{i} p_i \log(\frac{1}{p_i})$$

REVIEW...

Source Coding: Basics

- Block code: When all codes have the same length. For example, ASCII (8-bits)
- Average Word Length:

$$L = \sum_{i=1}^{m} p_i l_i$$

More generally,

$$L_n = \frac{1}{n} \sum_{i=1}^m p_i l_i$$

• A code is **efficient** if it has the smallest average word length. (Turns out entropy is the benchmark...)

Average Code Length & Entropy

- Average length bounds: $H \le L < H + 1$
- Grouping *n* symbols together:

$$H(S^n) \le L < H(S^n) + 1$$

$$nH(S) \le L < nH(S) + 1$$

$$H(S) \le \frac{L}{n} < H(S) + \frac{1}{n}$$

$$\lim_{n\to\infty} \frac{L_n}{n} = H$$

REVIEW...

Shannon's First Theorem

• By coding sequences of independent symbols (in S^n), it is possible to construct codes such that

$$\lim_{n\to\infty}\frac{L_n}{n}=\mathrm{H}$$

The price paid for such improvement is increased coding complexity (due to increased n) and increased delay in coding.

REVIEW

Entropy & Coding: Central Ideas

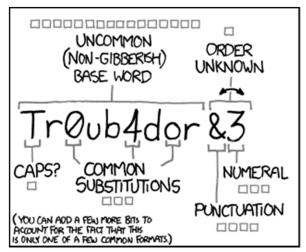
- Use short codes for highly likely events. This shortens the average length of coded messages.
- Code several events at a time. Provides greater flexibility in code design.
- Shannon's Source Coding Theorem
- Algorithms
- Applications

REVIEW...

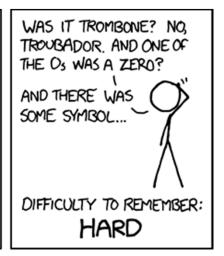
Source Coding

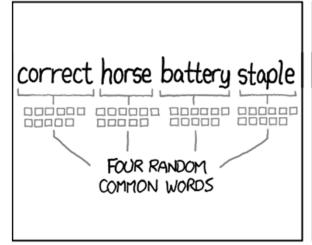
- **Efficient** codes
- Singular codes
- Nonsingular codes
- Instantaneous codes
- Universal Codes

Codes that do not require knowledge of probability distribution but act in the limit as if they did have the knowledge.

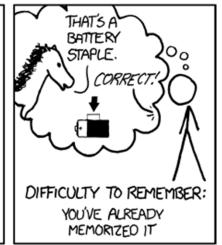

Huffman Codes

- Nonsingular
- Instantaneous
- Efficient
- Non-unique
- Powers of a source lead closer to *H*
- Requires knowledge of symbol probabilities REVIEW...


Entropy & Coding: Central Ideas


- Use short codes for highly likely events. This shortens the average length of coded messages.
- Code several events at a time. Provides greater flexibility in code design.
- Shannon's Source Coding Theorem
- Algorithms: Huffman Encoding, ...
- Applications: Compression...
 REVIEW...

xkcd(#936): Password Strength



THROUGH 20 YEARS OF EFFORT, WE'VE SUCCESSFULLY TRAINED EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS TO REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Some Observations

 Successive symbols from a source are not always independent. E.g. in english,

h is more likely to occur following a t.

 This intersymbol dependency must be accounted for in an accurate measure of entropy.

Lossless Compression: English Text

- How much can we compress a given text?
- What is the accurate measure of entropy of English texts?
- Zeroth-Order entropy

$$H_0 \le \log\left(\frac{1}{27}\right)$$

$$\le 4.755 \ bits/letter$$

• First-Order Entropy:

$$H_1 = 3.3$$

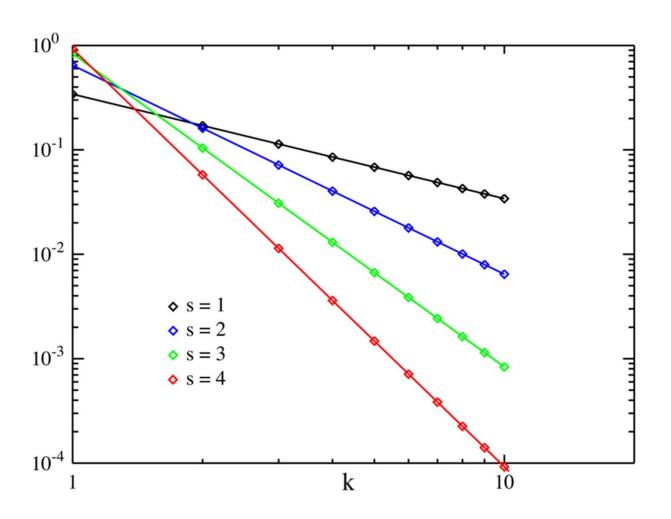
Second-Order Entropy:

$$H_2 = 3.1$$

Zipf's Law, 1949

$$P_n \sim 1/n^a$$

 P_n is the frequency of occurrence of the n^{th} ranked item and a is close to 1.


- The most frequent word will occur approximately twice as often as the second most frequent word, three times as often as the third most frequent word, etc.
- For example, in a corpus of over 1 million words:

For English text:

$$p_m = \frac{A}{m}$$

where m is the word's rank, p_m is the probability of the m^{th} rank word, A is a constant that depends on the number of active words in the language. 9/25/2012

Zipf's Law

Estimating Entropy of English Text

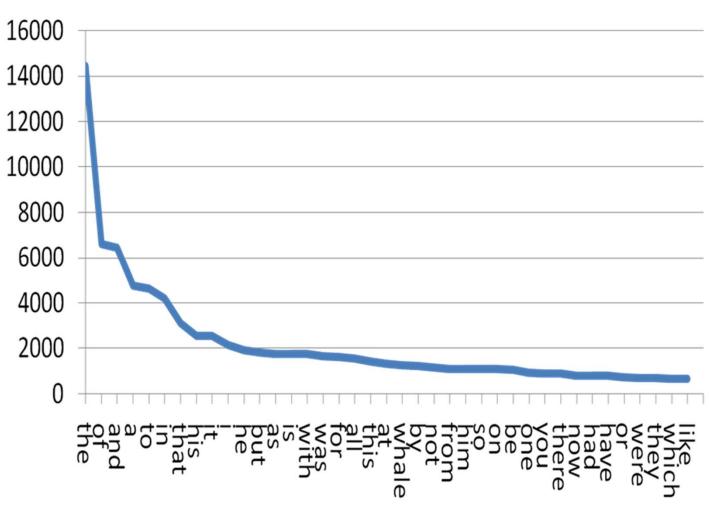
• For English text, *W* with *M* words:

$$p_m = \frac{A}{m}$$

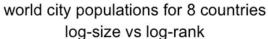
where m is the word's rank, p_m is the probability of the m^{th} rank word, A is a constant that depends on the number of active words in the language.

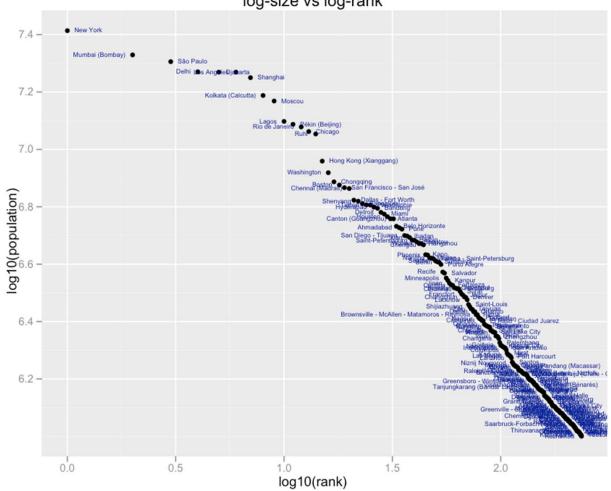
• If A = 0.1, so that

$$\sum_{m=1}^{M} p_m = 1$$


We need, M = 12,366.

$$H_W = \sum_{m=1}^{m=12,366} \frac{.01}{m} \log\left(\frac{m}{.01}\right) = 9.72 \ bits/word$$


If \overline{w} =4.5 letters/word


$$H = \frac{9.72}{4.5} = 2.16$$
bits/word

The "Long Tail" of Moby Dick

Zipf's Law and Populations

Shannon Redundancy

$$R = 1 - \frac{H}{\log M}$$

Where H is the per letter entropy, M is the size of the source alphabet. Thus redundancy of English is

$$1 - \frac{2.16}{\log 27} = 54.6\%$$

With an entropy of 1.5 we get 67% redundancy.

I.e. Huffman coding (even with an entropy of 3.3 or 3.1) will not get close to the theoretical limit.

Can we achieve compression rates close to 33%???

Lempel-Ziv Coding

 Sequences of text repeat patterns (words, phrases, etc)

Construct a dictionary of common patterns

• Send references to patterns as triples (x, y, z)

Message	Search Buffer	Look-Ahead Buffer
		THIS-THESIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т		THIS-THESIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т		THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н		THIS-THESIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т		THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н		THIS-THESIS-IS-THE-THESIS.
0	0	1	1		THIS-THESIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т		THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IIS-THESIS-IS-THE-THESIS.
0	0	ı	ı	TH	IS-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	S-THESIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т		THIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IIS-THESIS-IS-THE-THESIS.
0	0	1	1	тн	IS-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	S-THESIS-IS-THE-THESIS.
0	0	-	-	THIS	-THESIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	тн	IS-THESIS-IS-THE-THESIS.
0	0	ı	1	тні	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Е	Е	THIS-THE	SIS-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	тн	IS-THESIS-IS-THE-THESIS.
0	0	1	1	тні	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Е	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	ı	SI	THIS-THESI	S-IS-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	тн	IS-THESIS-IS-THE-THESIS.
0	0	ı	1	тні	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Е	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	I	SI	THIS-THESI	S-IS-THE-THESIS.
7	2	1	S-I	THIS-THESIS-I	S-THE-THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IS-THESIS-IS-THE-THESIS.
0	0	1	ı	THI	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Е	THE	THIS-THE	SIS-IS-THE-THESIS.
5	1	1	SI	THIS-THESI	S-IS-THE-THESIS.
7	2	1	S-I	THIS-THESIS-I	S-THE-THESIS.
10	5	-	S-THE-	THIS-THESIS-IS-THE-	THESIS.

ſ	Message		age	Search Buffer	Look-Ahead Buffer
					THIS-THESIS-IS-THE-THESIS.
0	0	Т	Т	Т	HIS-THESIS-IS-THE-THESIS.
0	0	Н	Н	TH	IS-THESIS-IS-THE-THESIS.
0	0	1	1	ТНІ	S-THESIS-IS-THE-THESIS.
0	0	S	S	THIS	-THESIS-IS-THE-THESIS.
0	0	-	-	THIS-	THESIS-IS-THE-THESIS.
5	2	Ε	THE	T H I S - T H E	SIS-IS-THE-THESIS.
5	1	1	SI	THIS-THESI	S-IS-THE-THESIS.
7	2	1	S-I	THIS-THESIS-I	S-THE-THESIS.
10	5	-	S-THE-	THIS-THESIS-IS-THE-	THESIS.
14	6		THESIS.	THIS-THESIS-IS-THE-THESIS.	

Lempel-Ziv Coding

- Sequences of text repeat patterns (words, phrases, etc)
- Construct a dictionary of common patterns
- Send references to patterns as triples (x, y, z) e.g. (5, 3, F) go back 5 received chars take the next 3 from there add F to the end
- Size of Search Buffer and Look-Ahead Buffer is finite.
- Used by ZIP, PKSip, Lharc, PNG, gzip, ARJ
- Extended to LZ78 (uses dictionary), LZW (+Terry Welch)
- Achieves optimal rate of transmission in the long run w/o using probability dist.

Message

0	0	1	
0	0	-	
0	0	М	
3	1	S	
1	1	-	
5	5	L	
5	3	Υ	

Message

0	0	ı	I
0	0	-	
0	0	М	
3	1	S	
1	1	-	
5	5	L	
5	3	Υ	

Message

0	0	1	Ī
0	0	-]-
0	0	M	
3	1	S	
1	1	-	
5	5	L	
5	3	Υ	

Message

0	0	1	I
0	0	-	Ī-
0	0	М	I - M
3	1	S	
1	1	-	
5	5	L	
5	3	Υ	

Message

0	0	1	I
0	0	-	Ī-
0	0	M	I - M
3	1	S	I - M I S
1	1	-	
5	5	L	
5	3	Υ	

Message

```
0 0 I I
0 0 - I -
0 0 M I - M
3 1 S I - M I S
1 1 - I - M I S S -
5 5 L
5 3 Y
```

Message

```
      0
      0
      I

      0
      0
      I -

      0
      M
      I - M

      3
      I
      S
      I - M I S

      1
      I
      I - M I S S -

      5
      L
      I - M I S S - M I S S - L

      5
      3
      Y
```

Message

```
      0
      0
      I

      0
      0
      I -

      0
      0
      M

      1
      S
      I - MISS

      1
      I - MISS - MISS - L

      5
      I - MISS - MISS - L

      5
      I - MISS - MISS - L
```

References

- Eugene Chiu, Jocelyn Lin, Brok Mcferron, Noshirwan Petigara, Satwiksai Seshasai: *Mathematical Theory of Claude Shannon: A study of the style and context of his work up to the genesis of information theory.*MIT 6.933J / STS.420J The Structure of Engineering Revolutions
- Luciano Floridi, 2010: Information: A Very Short Introduction, Oxford University Press, 2011.
- Luciano Floridi, 2011: *The Philosophy of Information*, Oxford University Press, 2011.
- James Gleick, 2011: The Information: A History, A Theory, A Flood, Pantheon Books, 2011.
- Zhandong Liu, Santosh S Venkatesh and Carlo C Maley, 2008: Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples, BMC Genomics 2008, **9:**509
- David Luenberger, 2006: Information Science, Princeton University Press, 2006.
- David J.C. MacKay, 2003: *Information Theory, Inference, and Learning Algorithms*, Cambridge University Press, 2003.
- Claude Shannon & Warren Weaver, 1949: *The Mathematical Theory of Communication*, University of Illinois Press, 1949.
- W. N. Francis and H. Kucera: *Brown University Standard Corpus of Present-Day American English*, Brown University, 1967.
- Edward L. Glaeser: A Tale of Many Cities, New York Times, April 10, 2010. Available at: http://economix.blogs.nytimes.com/2010/04/20/a-tale-of-many-cities/
- Alan Rimm-Kaufman, The Long Tail of Search. Search Engine Land Website, September 18, 2007.
 Available at: http://searchengineland.com/the-long-tail-of-search-12198