Information Retrieval – Part 2

Deepak Kumar

Borges' Library of Babel

"...each book contains four hundred ten pages; each page, forty lines; each line, approximately eighty black letters. There are also letters on the front cover of each book; these letters neither indicate nor prefigure what the pages inside will say."

Q: How many books are in the library? Q. How would you find what you're looking for?

Elements of a Search Engine

Web Information Retrieval

- Search Engines
- Queries phrase queries structure queries (NEAR, intitle:, ...)
- Matching
- Inverted Index page number location
- Ranking & Relevance
- Metadata

Web Information Retrieval

- Search Engines
- Queries phrase queries structure queries
- Matching
- Inverted Index page number location
- Ranking & Relevance
- Metadata

Efficient matching is only one half the story.

The other grand challenge is how to <u>rank</u> the matching pages

Matching & Ranking

Ranking & Relevance

By far the most common cause of malaria is being bitten by an infected mosquito, but there are also other ways to contract the disease.

2 Our cause was not helped by the poor health of the troops, many of whom were suffering from malaria and other tropical diseases.

query	
malaria cause	

also	1-19	
 cause	1-6 2-2	Nearness can resolve the ranking!
 malaria	1-8 2-19	
 whom	2-15	

Metadata

- 1 <title>my cat
 </title> <body>
 the cat sat on
 the mat </body>

3 <title>my pets </title><body>th e cat stood while a dog sat

а	3-10
cat	1-3 1-7 3-7
dog	2-3 2-7 3-11
mat	1-11 2-11
my	1-2 2-2 3-2
on	1-9 2-9
pets	3-3
sat	1-8 3-12
stood	2-8 3-8
the	1-6 1-10 2-6 2-10 3-6
while	3-9
<body></body>	1-5 2-5 3-5
	1-12 2-12 3-13
<title></td><td>1-1 2-1 3-1</td></tr><tr><td></title>	1-4 2-4 3-4

Structure Queries

Exploiting Link Structure

• **PageRank** exploits the structure of the web:

Use of Hyperlinks to

- count # of incoming links
- Identifying web authority
- Use the above in determining ranking & relevance.

The Garage

Garage at 232 Santa Margarita, Menlo Park, CA

Google 1.0 (1998)

2-proc Pentium II 300mhz, 512mb, five 9gb drives
2-proc Pentium II 300mhz, 512mb, four 9gb drives
4-proc PPC 604 333mhz, 512mb, eight 9gb drives
2-proc UltraSparc II 200mhz, 256mb, three 9gb drives, six 4gb drives
Disk expansion, eight 9gb drives
Disk expansion, ten 9gb drives

That's a total of: 1792 megabytes of memory 366 gigabytes of disk storage 2933 megahertz in 10 CPUs

The Disk Storage

Google 1.0 (1998) Google Search the web using Google Description of the median of the

About Google!

Stanford Search Linux Search

Get Google! updates monthly!

your e-mail

Subscribe Archive

Copyright ©1997-8 Stanford University

Google Search page on Stanford Server - November 11, 1998 Screen Shot from Internet Archive - Wayback Machine - <u>http://web.archive.org</u>

Search the web using Google!

Google Search I'm feeling lucky

 Special Searches
 Help!
 Get Google!

 Stanford Search
 About Google!
 updates monthly:

 Stanford Search
 Company Info
 your e-mail

 Linux Search
 Google! Logos
 Subscribe
 Archive

Copyright ©1998 Google Inc.

Google Search page on own (google.com) Server - December 2, 1998 Screen Shot from Internet Archive - Wayback Machine - <u>http://web.archive.org</u>

Hyperlinks

Hyperlinks: # Incoming Links

Hyperlinks: # Incoming Links

Hyperlinks: Authority

Hyperlinks: Authority

Cycles

and so on...stuck in an infinite loop....

Sinks

Sinks

pages with many incoming links get high ranking

The Random Surfer

The Random Surfer

The Random Surfer

Formalizing PageRank

- Given a web page, *P_i*
- Set of pages pointing into P_i , B_{P_i}
- Number of outgoing links from page P_i , $|P_i|$
- PageRank of a page, $r(P_i)$

$$r(P_i) = \sum_{P_j \in B_{P_i}} \frac{r(P_j)}{|P_j|}$$

- $r(P_1) = r(P_3)$
- But, $r(P_3)$ is unknown
- To start, assume all pages have rank $\frac{1}{n}$ (n = 6)

•
$$\therefore r(P_1) = \frac{1}{6}$$

$$r_0(P_1) = 1/6$$

$$r_0(P_2) = 1/6$$

$$r_0(P_3) = 1/6$$

$$r_0(P_4) = 1/6$$

$$r_0(P_5) = 1/6$$

$$r_0(P_6) = 1/6$$

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$$

$$r_1(P_1) = 1/18$$

$$r_1(P_2) = 5/36$$

$$r_1(P_3) = 1/12$$

$$r_1(P_4) = 1/4$$

$$r_1(P_5) = 5/36$$

$$r_1(P_6) = 1/6$$

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$$

$$r_{2}(P_{1}) = 1/36$$

$$r_{2}(P_{2}) = 1/18$$

$$r_{2}(P_{3}) = 1/36$$

$$r_{2}(P_{4}) = 17/72$$

$$r_{2}(P_{5}) = 11/72$$

$$r_{2}(P_{6}) = 14/72$$

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$$

 $r_2(P_1) = 1/36$ $r_2(P_2) = 1/18$ $r_2(P_3) = 1/36$ $r_2(P_4) = 17/72$ $r_2(P_5) = 11/72$ $r_2(P_6) = 14/72$

$$r_{k+1}(P_i) = \sum_{P_j \in B_{P_i}} \frac{r_k(P_j)}{|P_j|}$$

Matrix Representation

• Adjacency Matrix

Matrix Representation

• Hyperlink Matrix, H

	1	2	3	4	5	6	
1	F 0	1/2	1/2	0	0	ך 0	
2		0	0	0	0	0	
3	1/3	1/3	0	0	1/3	0	
4		0	0	0	1/2	1/2	
5	0	0	0	1/2	0	1/2	
6	L 0	0	0	1	0	0]	

• $\pi_{k+1}^T = \pi_k^T H$

where π_k^{T} is the k^{th} PageRank vector

The PageRank Equation

•
$$\pi^T = \pi^T (\alpha S + (1 - \alpha)E)$$

where S is the stochastic H matrix E is the teleportation matrix α is the scaling parameter

• Certain stochastic conditions apply!

Google Data Center

References

- Google's PageRank and Beyond, Amy N. Langville and Carl D. Meyer, Princeton University Press, 2006.
- Nine Algorithms That Changed The Future, John MacCormick, Princeton University Press, 2012.
- The Unimaginable Mathematics of Borges' Library of Babel, William G. Bloch, Oxford University Press, 2008.