10/25/2021

Constraint Satisfaction
Problems — Part 2

Deepak Kumar
October 2021

CSP Formulation
(as a special case of search)

* State is defined by n variables

{xl, X2, e ,Xn}

* Variables can take on values from a domain set
(One for each variable)

{D1,Dy, ..., Dy}

* Goal test is a set of constraints specifying allowable combinations of values of
variables (subsets)

* This allows general purpose algorithms without resorting to domain specific
heuristics.

10/25/2021

Example: Map-Coloring

Northern
Territory

* Variables: WA, NT, Q, NSW, V, SA, T Australa

South
Australia

* Domains: D; = {red, green, blue}

New South Wales

* Constraints: adjacent regions must have different colors

Tasmania

e.g, WA #= NT

or
(WA,NT)
€ {(red, green), (red, blue), (green,red), (green, blue), (blue,red), (blue, green)}

Constraint Graph Representation of CSP

* Binary CSP: each constraint relates two variables

* Constraint graph: nodes are variables, edges/arcs are constraints

@

New South Wales

Northern
Territory

Western
Australia

N

South
Australia

o

Tasmania

10/25/2021

Example: Map-Coloring

Northern
Territory

* Solutions are complete and consistent assignments

(WA = red,

NT = green, New South Wales
Q = red,

NSW = green,

V = red, Tashania

SA = blue,

T = green}

Start with a basic search algorithm...

Initial State: Empty assignment { }
Successor Function: assign a value to an unassigned variable
Goal Test: current assignment complete & consistent?

10/25/2021

Western
Australia

Backtracking Search

{}
Choose WA)
{WA =red} {WA=green} {WA = blue} {NT = red} {T = blue} d (7*3=21)
ChooseV
{WA =red d(673=18)
NT = green}
Choose C/\
(IR = red 1. Pick one variable at a time. dn (6! % 37)
Q =red}

2. Check constraints as you go.
(incremental goal testing)

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

SELECT-UNASSIGNED-VARIABLE()

var < SELECT-UNASSIGNED-VARIABLE(csp, assignment) - selects a variable to assign

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment ORDER-DOMAIN-VALUES()
inferences <~ INFERENCE(csp, var, assignment) - selects a value to be assigned

if inferences # failure then
add inferences to csp INFERENCE())
result < BACKTRACK(csp, assignment) - checks to see if all

assignments are consistent

if result # failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

10/25/2021

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ¢ SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all
assignments are consistent

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ¢ SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
if value is consistent with assignment according to constraints[csp] then

result & BACKTRACK(csp, assignment))

if result # failure then return result
remove { var = value } from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

10

10/25/2021

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

Which variable

to pick next? function BACKTRACK(csp, assignment) returns a solution or failure

if assignment is complete then return assignment

var ¢ SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each vglue in ORDER-DOMAIN-VALUES(csp, var, assignment) do
: ar = value} to assignment
Which value to

assign next? if value is consistent with assignment according to constraints[csp] then
result & BACKTRACK(csp, assignment))

if result # failure then return result

T remove { var = value } from assignment
These are return failure
general purpose
heuristics.

11

Improving Backtracking Search — Ordering
Variables & Values

* Which variable to pick next?
MRV- Most constrained variable (one with fewest remaining values)

e Which value to assign next?
Least constraining value first

* Also, we can use the degree heuristic
Pick the variable with the highest degree in the constraint graph

12

10/25/2021

Most constrained variable

* Most constrained variable:
choose the variable with the fewest legal values

SN SSla SSa oS

* a.k.a. heuristic

13

Degree Heuristic

* Pick the variable with the highest degree in the constraint graph

Useful in picking the very first variable
(when no variables have been assigned)

©—3
@‘@'40@

@

14

10/25/2021

Least constraining value

* Given a variable, choose the least constraining value:
* the one that rules out the fewest values in the remaining variables

‘1 I% Allows 1 value for SA

<l e

15
Which variable
to pick first? function BACKTRACKING-SEARCH(csp) returns solution or failure
Degree Heuristic return BACTRACK(csp, {})
Which variable function BACKTRACK(csp, assignment) returns a solution or failure
to pick next? if assignment is complete then return assignment
MRV Heuristic .
var ¢~ SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
Which value to /Hm'consistent with assignment according to constraints[csp] then
assign next? add { var = value } to assignment
LCV Heuristic result ¢ BACKTRACK(csp, assignment))
if result # failure then return result
T remove { var = value } from assignment
return failure
These are
general purpose
heuristics.
16

10/25/2021

Improving Backtracking Search

* Ordering

* Which variable to pick next?
MRV- Most constrained variable (one with fewest remaining values)

* Which value to assign next?
Least constraining value first

* Filtering/Inference [Interleaving search & inference]
* Forward Checking

* Arc Consistency

17
. . . @‘@'o
Forward Checking (Filtering/Inference) Cao
O
* Idea ©
* Keep track of remaining legal values for unassigned variables
* Terminate search when any variable has no legal values
SSEA SSEs Sels S
WA NT Q NSW v SA T
[1 EENEENEETE EENE
. | 1| m mmew] E[EEN]
(] u] o [o— O
18

10/25/2021

Forward Checking (Filtering/Inference)

* Can also help if combined with MRV heuristic
After WA=red, we have constrained NT & SA to (green, blue)
All others have three colors possible.
Pick one of NT or SA to color next, instead of Q.

S S S-as &

WA NT Q NSW v SA T
(mEEErE[ErE|ErE[ErE[Er E[E T]
] | | il Il B | 11 B |
1 ICE 1 (o]

)

@s:

«@,

©)

19

Backtracking w/ Forward Checking

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var < SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then

add { var = value } to assignment
result < BACKTRACK(csp, assignment))

if result # failure then return result
remove { var = value } from assignment

return failure e Y
if inferences # failure

inferences « FC(csp, var, assignment)

add inferences to current assignment

20

10

10/25/2021

‘!9

«@,

Constraint propagation '”"@

©)

* Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

S SSA Ss

wA NT Q NSW v sA T
I I I Ire e ire

(| SEESEEE/ESE] SE[ES

[| || djE EjESE [11 I |

* NT and SA cannot both be blue! [Arc Inconsistency]
repeatedly enforces constraints locally

21
- car
Arc Consistency Cao
O,
. . ©,
* Simplest form of propagation makes each arc
* X Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints
l_L’: “_L’: ‘t_L': 1. Check V and NSW — OK
WA NT Q NSW v SA T
(ew] s/ e EEfE] W]
22

11

10/25/2021

Arc Consistency

* Simplest form of propagation makes each arc

* X =Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints

S SSA Ss

wA NT Q NSW v sA T
1] m E[mE] 1]

~—

1.
2.

:':

i

Check V and NSW — OK
Check SA and NSW - OK

23
@o
Arc Consistenc S
@‘@
O,
. . ©,
* Simplest form of propagation makes each arc
* X Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints
1. Check V and NSW — OK
|—L’:—>‘\—L':——‘l—ﬁ: 2. Check SA and NSW — OK
3. Check NSW and SA
Ris OK, B is not
WA NT Q NSW v SA T
(ew] s[FFTe EEfE] E[EDE]
24

12

10/25/2021

Arc Consistency

* Simplest form of propagation makes each arc

* X =Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints

SSEA SR =~

~

* If X loses a value, neighbors of X need to be rechecked

N

:':

i

Check V and NSW — OK
Check SA and NSW - OK
Check NSW and SA

Ris OK, B is not

Check V and NSW

Ris not OK, delete

25
O—©
: o %
Arc Consistency Cao
O
* Simplest form of propagation makes each arc ©
* X >Yis consistent iff
for every value x of X there is some allowed y w/o violating any constraints
WA NT Q NSW v SA T 1. Check V and NSW — OK
(ow] m] ICD oG 1D (T 2. Check SA and NSW — OK
T 3. Check NSW and SA
Ris OK, B is not
* If Xloses a value, neighbors of X need to be rechecked 4. Check V and NSW
. R is not OK, delete
Arc consistency detects failure earlier than forward checking
. 5. Check SA and NT
* Can be run as a preprocessor or after each assignment Failure!
26

13

10/25/2021

Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w
queue < a queue of arcs, initially all arcs in csp

while queue is not empty do
(Xi, X;)<POP(queue)
if RE\/ISE(csp, X;) then
if size of D; = 0 t]hen return false
for each Xk in X; .NEIGHBORS — {X }do
add (X, X;) to queue
return true

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;
revised < false
for each xin D; do
if no value in'D; allows (x, y) to satisfy constraint between X;and X; then
delete x from D
revised & true
return revised

27

Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w
queue < a queue of arcs, initially all arcs in csp

w(h);le qL)leéuzFa’losPnot emﬁ)ty do 543
i queue i itye
{2 RE\fISE(csp, % then Time complexity: O(n%d3)
if size of D; = ‘0 then return false
for each Xk in X;.NEIGHBORS - {X;} do
add (X, X;) to queue
return true

function REVISE(csp, X;, X;) returns true iff we revise the domain of X;
revised & false
for each xin D; do
if no value in'D; allows (x, y) to satisfy constraint between X;and X; then
delete x from D
revised & true
return revised

28

14

10/25/2021

Improving Backtracking Search

* Ordering

* Which variable to pick next?
Most constrained variable (one with fewest remaining values)

* Which value to assign next?
Least constraining value first

* Filtering
* Forward Checking

* Arc Consistency

29

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure

if assignment is complete then return assignment SELECT-UNASSIGNED-VARIABLE()

var < SELECT-UNASSIGNED-VARIABLE(csp, assignment) - selects a variable to assign

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment ORDER-DOMAIN-VALUES()
inferences <~ INFERENCE(csp, var, assignment) - selects a value to be assigned

if inferences # failure then
add inferences to csp INFERENCE())
result < BACKTRACK(csp, assignment) - checks to see if all

assignments are consistent

if result # failure then return result

remove inferences from csp

remove {var = value} from assignment
return failure

30

15

10/25/2021

Summary

* CSPs are a special kind of search problem:
* states defined by values of a fixed set of variables
* goal test defined by constraints on variable values

* Backtracking = depth-first search with one variable assigned per node
* Variable ordering and value selection heuristics help significantly
* Forward checking prevents assignments that guarantee later failure

 Constraint propagation (e.g., arc consistency) does additional work to constrain
values and detect inconsistencies

31

16

