
10/25/2021

1

Constraint Satisfaction 
Problems – Part 2

Deepak Kumar
October 2021

CSP Formulation
(as a special case of search)
• State is defined by n variables

𝑥1, 𝑥2, … , 𝑥𝑛
• Variables can take on values from a domain set 

(One for each variable)

𝐷1, 𝐷2, … , 𝐷𝑛

• Goal test is a set of constraints specifying allowable combinations of values of 
variables (subsets)

• This allows general purpose algorithms without resorting to domain specific 
heuristics.

1

2



10/25/2021

2

Example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: 𝐷𝑖 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

• Constraints: adjacent regions must have different colors

e.g., 𝑊𝐴 ≠ 𝑁𝑇

or 
𝑊𝐴,𝑁𝑇
∈ {(𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛), (𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒), (𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑), (𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒), (𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑), (𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛)}

Constraint Graph Representation of CSP

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, edges/arcs are constraints

3

4



10/25/2021

3

Example: Map-Coloring

• Solutions are complete and consistent assignments

{𝑊𝐴 = 𝑟𝑒𝑑,
𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛,
𝑄 = 𝑟𝑒𝑑,
𝑁𝑆𝑊 = 𝑔𝑟𝑒𝑒𝑛,
𝑉 = 𝑟𝑒𝑑,
𝑆𝐴 = 𝑏𝑙𝑢𝑒,
𝑇 = 𝑔𝑟𝑒𝑒𝑛}

Start with a basic search algorithm…

Initial State: Empty assignment

Successor Function: assign a value to an unassigned variable

Goal Test: current assignment complete & consistent?

5

6



10/25/2021

4

Backtracking Search
{}

{WA = red} {WA = green} {WA = blue} {NT = red} {T = blue}………….

{WA = red
NT = green}

{WA = red
NT = red
Q = red}

………….

d (7*3=21)

d (6*3=18)

…
…

…
…

.

𝑑𝑛 (6! ∗ 37)1. Pick one variable at a time.

2. Check constraints as you go.
(incremental goal testing)

Choose WA

Choose NT

Choose Q

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
inferences ← INFERENCE(csp, var, assignment)

if inferences ≠ failure then
add inferences to csp
result ← BACKTRACK(csp, assignment)

if result ≠ failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all 

assignments are consistent

7

8



10/25/2021

5

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
inferences ← INFERENCE(csp, var, assignment)

if inferences ≠ failure then
add inferences to csp
result ← BACKTRACK(csp, assignment)

if result ≠ failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all 

assignments are consistent

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then
result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

9

10



10/25/2021

6

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then
result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure

Which variable
to pick next?

Which value to
assign next?

These are
general purpose
heuristics.

Improving Backtracking Search – Ordering 
Variables & Values

• Which variable to pick next?
MRV- Most constrained variable (one with fewest remaining values)

• Which value to assign next?
Least constraining value first

• Also, we can use the degree heuristic
Pick the variable with the highest degree in the constraint graph

11

12



10/25/2021

7

Most constrained variable

• Most constrained variable:
choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic

Degree Heuristic

• Pick the variable with the highest degree in the constraint graph

Useful in picking the very first variable 
(when no variables have been assigned)

13

14



10/25/2021

8

Least constraining value

• Given a variable, choose the least constraining value:
• the one that rules out the fewest values in the remaining variables

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then

add { var = value } to assignment
result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure

Which variable
to pick next?
MRV Heuristic

Which value to
assign next?
LCV Heuristic

These are
general purpose
heuristics.

Which variable
to pick first?
Degree Heuristic

15

16



10/25/2021

9

Improving Backtracking Search

• Ordering
• Which variable to pick next?

MRV- Most constrained variable (one with fewest remaining values)

• Which value to assign next?
Least constraining value first

• Filtering/Inference [Interleaving search & inference]
• Forward Checking

• Arc Consistency

Forward Checking (Filtering/Inference)

• Idea 
• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values

17

18



10/25/2021

10

Forward Checking (Filtering/Inference)

• Can also help if combined with MRV heuristic
After WA=red, we have constrained NT & SA to (green, blue)
All others have three colors possible.
Pick one of NT or SA to color next, instead of Q.

Backtracking w/ Forward Checking
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then

add { var = value } to assignment

result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure inferences ← 𝐹𝐶(𝑐𝑠𝑝, 𝑣𝑎𝑟, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)
if inferences ≠  failure

add inferences to current assignment

19

20



10/25/2021

11

Constraint propagation

• Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures:

• NT and SA cannot both be blue! [Arc Inconsistency]

• Constraint propagation repeatedly enforces constraints locally

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints

1. Check V and NSW – OK

21

22



10/25/2021

12

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints

1. Check V and NSW – OK
2. Check SA and NSW – OK

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints 

1. Check V and NSW – OK
2. Check SA and NSW – OK
3. Check NSW and SA

R is OK, B is not

23

24



10/25/2021

13

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints 

• If X loses a value, neighbors of X need to be rechecked

1. Check V and NSW – OK
2. Check SA and NSW – OK
3. Check NSW and SA

R is OK, B is not
4. Check V and NSW

R is not OK, delete

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints 

• If X loses a value, neighbors of X need to be rechecked

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

1. Check V and NSW – OK
2. Check SA and NSW – OK
3. Check NSW and SA

R is OK, B is not
4. Check V and NSW

R is not OK, delete
5. Check SA and NT

Failure!

25

26



10/25/2021

14

Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w
queue ← a queue of arcs, initially all arcs in csp

while queue is not empty do
(𝑋𝑖 , 𝑋𝑗)←POP(queue)
if REVISE(csp, 𝑋𝑖 , 𝑋𝑗) then

if size of 𝐷𝑖 = 0 then return false
for each 𝑋𝑘 in 𝑋𝑖.NEIGHBORS – {𝑋𝑗} do

add (𝑋𝑘, 𝑋𝑗) to queue
return true

function REVISE(csp, 𝑋𝑖 , 𝑋𝑗) returns true iff we revise the domain of 𝑋𝑖
revised ← false
for each x in 𝐷𝑗 do

if no value in 𝐷𝑖 allows (x, y) to satisfy constraint between 𝑋𝑖and 𝑋𝑗 then
delete x from 𝐷𝑖
revised ← true

return revised

Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w
queue ← a queue of arcs, initially all arcs in csp

while queue is not empty do
(𝑋𝑖 , 𝑋𝑗)←POP(queue)
if REVISE(csp, 𝑋𝑖 , 𝑋𝑗) then

if size of 𝐷𝑖 = 0 then return false
for each 𝑋𝑘 in 𝑋𝑖.NEIGHBORS – {𝑋𝑗} do

add (𝑋𝑘, 𝑋𝑗) to queue
return true

function REVISE(csp, 𝑋𝑖 , 𝑋𝑗) returns true iff we revise the domain of 𝑋𝑖
revised ← false
for each x in 𝐷𝑗 do

if no value in 𝐷𝑖 allows (x, y) to satisfy constraint between 𝑋𝑖and 𝑋𝑗 then
delete x from 𝐷𝑖
revised ← true

return revised

Time complexity: O(n2d3)

27

28



10/25/2021

15

Improving Backtracking Search

• Ordering
• Which variable to pick next?

Most constrained variable (one with fewest remaining values)

• Which value to assign next?
Least constraining value first

• Filtering
• Forward Checking

• Arc Consistency

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
inferences ← INFERENCE(csp, var, assignment)

if inferences ≠ failure then
add inferences to csp
result ← BACKTRACK(csp, assignment)

if result ≠ failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all 

assignments are consistent

29

30



10/25/2021

16

Summary

• CSPs are a special kind of search problem:
• states defined by values of a fixed set of variables
• goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work to constrain 
values and detect inconsistencies

31


