Constraint Satisfaction Problems – Part 2

Deepak Kumar October 2021

CSP Formulation (as a special case of search)

• State is defined by *n* variables

 $\{x_1, x_2, \dots, x_n\}$

 Variables can take on values from a domain set (One for each variable)

 $\{D_1,D_2,\ldots,D_n\}$

- Goal test is a set of constraints specifying allowable combinations of values of variables (subsets)
- This allows general purpose algorithms without resorting to domain specific heuristics.

<pre>function BACKTRACKING-SEARCH(csp) returns solution or failure return BACTRACK(csp, {})</pre>	
function BACKTRACK(<i>csp, assignment</i>) returns a solution or <i>failure</i> if <i>assignment</i> is complete then return <i>assignment</i>	SELECT-LINASSIGNED-VARIABLE
$var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp, assignment)$	- selects a variable to assign
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do add {var = value} to assignment inferences ← INFERENCE(csp, var, assignment)	ORDER-DOMAIN-VALUES() - selects a value to be assigned
if inferences ≠ failure then add inferences to csp result ← BACKTRACK(csp, assignment)	INFERENCE() - checks to see if all
if result ≠ failure then return result remove inferences from csp	assignments are consistent

Improving Backtracking Search – Ordering Variables & Values

- Which variable to pick next? *MRV- Most constrained variable* (one with fewest remaining values)
- Which value to assign next? Least constraining value first
- Also, we can use the *degree heuristic* Pick the variable with the highest degree in the constraint graph


```
Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w

queue \leftarrow a queue of arcs, initially all arcs in csp

while queue is not empty do

(X_i, X_j) \leftarrow POP(queue)

if REVISE(csp, X_i, X_j) then

if size of D_i = 0 then return false

for each X_k in X_i.NEIGHBORS – {X_j} do

add (X_k, X_j) to queue

return true

function REVISE(csp, X_i, X_j) returns true iff we revise the domain of X_i

revised \leftarrow false

for each x in D_j do

if no value in D_i allows (x, y) to satisfy constraint between X_i and X_j then

delete x from D_i

revised \leftarrow true

return revised
```

27

Improving Backtracking Search

Ordering

- Which variable to pick next? Most constrained variable (one with fewest remaining values)
- Which value to assign next? Least constraining value first

• Filtering

- Forward Checking
- Arc Consistency

29

Summary

- CSPs are a special kind of search problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

31