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Constraint Satisfaction 
Problems – Part 2

Deepak Kumar
October 2021

CSP Formulation
(as a special case of search)
• State is defined by n variables

𝑥1, 𝑥2, … , 𝑥𝑛
• Variables can take on values from a domain set 

(One for each variable)

𝐷1, 𝐷2, … , 𝐷𝑛

• Goal test is a set of constraints specifying allowable combinations of values of 
variables (subsets)

• This allows general purpose algorithms without resorting to domain specific 
heuristics.
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Example: Map-Coloring

• Variables: WA, NT, Q, NSW, V, SA, T

• Domains: 𝐷𝑖 = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}

• Constraints: adjacent regions must have different colors

e.g., 𝑊𝐴 ≠ 𝑁𝑇

or 
𝑊𝐴,𝑁𝑇
∈ {(𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛), (𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒), (𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑), (𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒), (𝑏𝑙𝑢𝑒, 𝑟𝑒𝑑), (𝑏𝑙𝑢𝑒, 𝑔𝑟𝑒𝑒𝑛)}

Constraint Graph Representation of CSP

• Binary CSP: each constraint relates two variables

• Constraint graph: nodes are variables, edges/arcs are constraints
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Example: Map-Coloring

• Solutions are complete and consistent assignments

{𝑊𝐴 = 𝑟𝑒𝑑,
𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛,
𝑄 = 𝑟𝑒𝑑,
𝑁𝑆𝑊 = 𝑔𝑟𝑒𝑒𝑛,
𝑉 = 𝑟𝑒𝑑,
𝑆𝐴 = 𝑏𝑙𝑢𝑒,
𝑇 = 𝑔𝑟𝑒𝑒𝑛}

Start with a basic search algorithm…

Initial State: Empty assignment

Successor Function: assign a value to an unassigned variable

Goal Test: current assignment complete & consistent?
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Backtracking Search
{}

{WA = red} {WA = green} {WA = blue} {NT = red} {T = blue}………….

{WA = red
NT = green}

{WA = red
NT = red
Q = red}

………….

d (7*3=21)

d (6*3=18)

…
…

…
…

.

𝑑𝑛 (6! ∗ 37)1. Pick one variable at a time.

2. Check constraints as you go.
(incremental goal testing)

Choose WA

Choose NT

Choose Q

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
inferences ← INFERENCE(csp, var, assignment)

if inferences ≠ failure then
add inferences to csp
result ← BACKTRACK(csp, assignment)

if result ≠ failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all 

assignments are consistent
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Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
inferences ← INFERENCE(csp, var, assignment)

if inferences ≠ failure then
add inferences to csp
result ← BACKTRACK(csp, assignment)

if result ≠ failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all 

assignments are consistent

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then
result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned
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Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then
result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure

Which variable
to pick next?

Which value to
assign next?

These are
general purpose
heuristics.

Improving Backtracking Search – Ordering 
Variables & Values

• Which variable to pick next?
MRV- Most constrained variable (one with fewest remaining values)

• Which value to assign next?
Least constraining value first

• Also, we can use the degree heuristic
Pick the variable with the highest degree in the constraint graph
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Most constrained variable

• Most constrained variable:
choose the variable with the fewest legal values

• a.k.a. minimum remaining values (MRV) heuristic

Degree Heuristic

• Pick the variable with the highest degree in the constraint graph

Useful in picking the very first variable 
(when no variables have been assigned)
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Least constraining value

• Given a variable, choose the least constraining value:
• the one that rules out the fewest values in the remaining variables

Backtracking Search Algorithm

function BACKTRACKING-SEARCH(csp) returns solution or failure
return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then

add { var = value } to assignment
result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure

Which variable
to pick next?
MRV Heuristic

Which value to
assign next?
LCV Heuristic

These are
general purpose
heuristics.

Which variable
to pick first?
Degree Heuristic
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Improving Backtracking Search

• Ordering
• Which variable to pick next?

MRV- Most constrained variable (one with fewest remaining values)

• Which value to assign next?
Least constraining value first

• Filtering/Inference [Interleaving search & inference]
• Forward Checking

• Arc Consistency

Forward Checking (Filtering/Inference)

• Idea 
• Keep track of remaining legal values for unassigned variables

• Terminate search when any variable has no legal values
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Forward Checking (Filtering/Inference)

• Can also help if combined with MRV heuristic
After WA=red, we have constrained NT & SA to (green, blue)
All others have three colors possible.
Pick one of NT or SA to color next, instead of Q.

Backtracking w/ Forward Checking
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment

if value is consistent with assignment according to constraints[csp] then

add { var = value } to assignment

result ← BACKTRACK(csp, assignment))

if result ≠ failure then return result
remove { var = value } from assignment

return failure inferences ← 𝐹𝐶(𝑐𝑠𝑝, 𝑣𝑎𝑟, 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡)
if inferences ≠  failure

add inferences to current assignment
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Constraint propagation

• Forward checking propagates information from assigned to unassigned variables, but 
doesn't provide early detection for all failures:

• NT and SA cannot both be blue! [Arc Inconsistency]

• Constraint propagation repeatedly enforces constraints locally

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints

1. Check V and NSW – OK
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Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints

1. Check V and NSW – OK
2. Check SA and NSW – OK

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints 

1. Check V and NSW – OK
2. Check SA and NSW – OK
3. Check NSW and SA

R is OK, B is not

23

24



10/25/2021

13

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints 

• If X loses a value, neighbors of X need to be rechecked

1. Check V and NSW – OK
2. Check SA and NSW – OK
3. Check NSW and SA

R is OK, B is not
4. Check V and NSW

R is not OK, delete

Arc Consistency

• Simplest form of propagation makes each arc consistent

• X →Y is consistent iff
for every value x of X there is some allowed y w/o violating any constraints 

• If X loses a value, neighbors of X need to be rechecked

• Arc consistency detects failure earlier than forward checking

• Can be run as a preprocessor or after each assignment

1. Check V and NSW – OK
2. Check SA and NSW – OK
3. Check NSW and SA

R is OK, B is not
4. Check V and NSW

R is not OK, delete
5. Check SA and NT

Failure!
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Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w
queue ← a queue of arcs, initially all arcs in csp

while queue is not empty do
(𝑋𝑖 , 𝑋𝑗)←POP(queue)
if REVISE(csp, 𝑋𝑖 , 𝑋𝑗) then

if size of 𝐷𝑖 = 0 then return false
for each 𝑋𝑘 in 𝑋𝑖.NEIGHBORS – {𝑋𝑗} do

add (𝑋𝑘, 𝑋𝑗) to queue
return true

function REVISE(csp, 𝑋𝑖 , 𝑋𝑗) returns true iff we revise the domain of 𝑋𝑖
revised ← false
for each x in 𝐷𝑗 do

if no value in 𝐷𝑖 allows (x, y) to satisfy constraint between 𝑋𝑖and 𝑋𝑗 then
delete x from 𝐷𝑖
revised ← true

return revised

Arc Consistency Algorithm (AC-3)

function AC-3(csp) returns false if inconsistency found, true o/w
queue ← a queue of arcs, initially all arcs in csp

while queue is not empty do
(𝑋𝑖 , 𝑋𝑗)←POP(queue)
if REVISE(csp, 𝑋𝑖 , 𝑋𝑗) then

if size of 𝐷𝑖 = 0 then return false
for each 𝑋𝑘 in 𝑋𝑖.NEIGHBORS – {𝑋𝑗} do

add (𝑋𝑘, 𝑋𝑗) to queue
return true

function REVISE(csp, 𝑋𝑖 , 𝑋𝑗) returns true iff we revise the domain of 𝑋𝑖
revised ← false
for each x in 𝐷𝑗 do

if no value in 𝐷𝑖 allows (x, y) to satisfy constraint between 𝑋𝑖and 𝑋𝑗 then
delete x from 𝐷𝑖
revised ← true

return revised

Time complexity: O(n2d3)
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Improving Backtracking Search

• Ordering
• Which variable to pick next?

Most constrained variable (one with fewest remaining values)

• Which value to assign next?
Least constraining value first

• Filtering
• Forward Checking

• Arc Consistency

Backtracking Search Algorithm
function BACKTRACKING-SEARCH(csp) returns solution or failure

return BACTRACK(csp, {})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment

var ← SELECT-UNASSIGNED-VARIABLE(csp, assignment)

for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do
add {var = value} to assignment
inferences ← INFERENCE(csp, var, assignment)

if inferences ≠ failure then
add inferences to csp
result ← BACKTRACK(csp, assignment)

if result ≠ failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

SELECT-UNASSIGNED-VARIABLE()
- selects a variable to assign

ORDER-DOMAIN-VALUES()
- selects a value to be assigned

INFERENCE()
- checks to see if all 

assignments are consistent
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Summary

• CSPs are a special kind of search problem:
• states defined by values of a fixed set of variables
• goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node

• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work to constrain 
values and detect inconsistencies
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