CMSC 373 Artificial Intelligence Fall 2025 16-ConvolutionNetworks

Deepak Kumar Bryn Mawr College

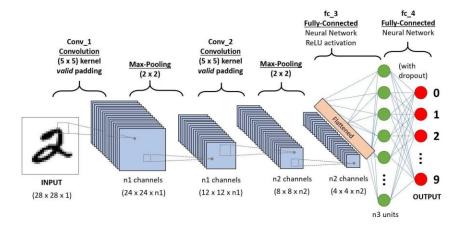
1

Deep Learning Revolution

- **Deep Learning** refers to deep neural networks (i.e. many hidden layers)
- The "deep" in Deep learning is NOT "learning that is deep" (i.e. meaningful or sophisticated learning!!)
- The "deep" ONLY refers to the "depth in layers" of the neural network.
- Convolution Networks are a kind of Deep Neural network.

Taking Inspiration from the Visual Cortex

- Hubel & Wiesel's experiments with cats and primates
 - Visual cortex is a hierarchical series of layers of neurons. Layers communicate back and forth extensively.
 - Layers act as feature detectors (edges, shapes, objects, etc).
 - Each neuron receives input corresponding to a specific small region of the visual scene in a neuron's receptive field).
 - Neurons activate only if their receptive field contains a particular kind of edge/feature (e.g. horizontal edge, vertical edge, angular edge, etc)
 - Lower-level neurons feed into higher level layers of the visual cortex for detecting shapes, objects, faces, etc.
- This is still a gross simplification. The brain is much more complex!

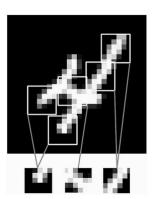


2

Convolution Networks – Short History

- Taking inspiration from Hubel & Wiesel...
- From Cognitron, to NeoCognitron (Fukushima, 1970s)
 Showed how a hierarchical network (using Relu!) could learn using unsupervised means.
- To Convolutional Neural Networks (1989) used for hand-written zipcodes. Developed by Yann LeCun (at AT&T Bell Labs). In 1995, LeCun et al developed LeNet-5 to classify handwritten digits (32x32 pixel images). Used to recognize numbers on checks by banks.

ConvNet Architecture

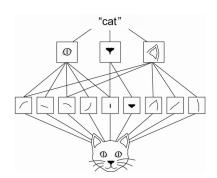


rom: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way

5

Dense Networks versus Convolution Networks

- Layers in dense networks learn global patterns in the input
 - E.g. MINIST Digit recognition: we flattened 28x28 images into 784 units and fed them into the hidden layer.
- Convolution Networks learn local patterns in input
 e.g. They look for patterns in small 2D windows (using patches/filters/kernels) of input images.
- Convolution Networks learn spatial hierarchies of patterns (e.g., edges, larger patterns, etc.)


6

Convolution Networks: Core Idea

Convolution Networks learn local patterns in input

e.g. They look for patterns in small 2D windows (using *patches/filters/kernels*) of input images.

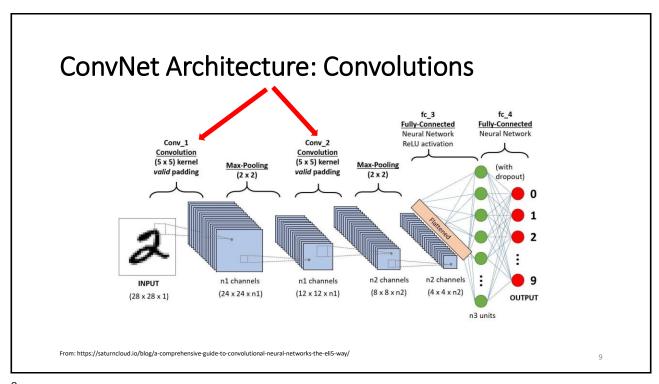
 Convolution Networks learn spatial hierarchies of patterns (e.g., edges, larger patterns, etc.)

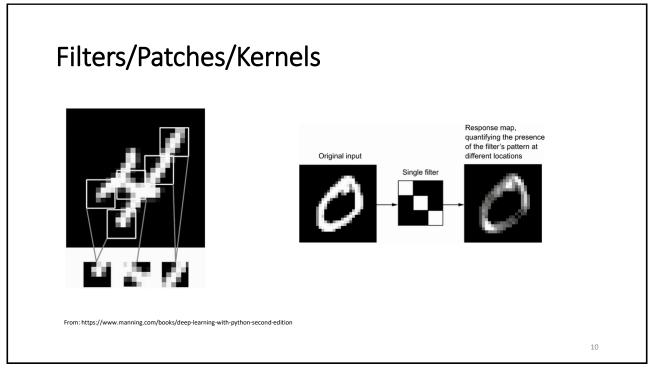
7

7

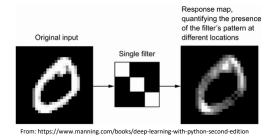
Convolution Networks: Basic Elements

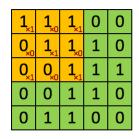
• Convolution (using filters/patches/kernels)


Small patches of input image/map are filtered to recognize local features


Feature Maps

Starting with an input image (e.g. 28x28x1) Using a 3x3 filter to get K output maps (26x26xK)


Max Pooling


A way of down sampling a feature map.

Filters/Patches/Kernels

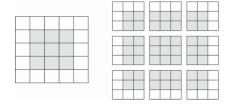
Image

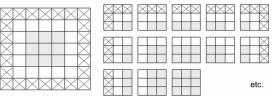
Convolved Feature

From: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

11

11

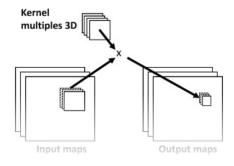

Filters: Padding

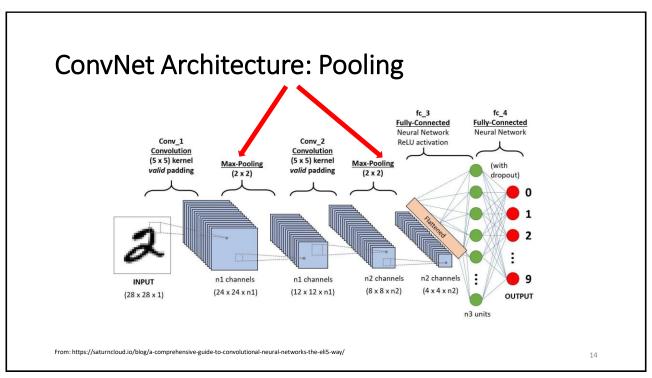

• "valid" Padding

No padding of input is done. Reduces the width and height of resulting map.

• "same" Padding

Pads input in such a way to preserve the width and height of the resulting map.

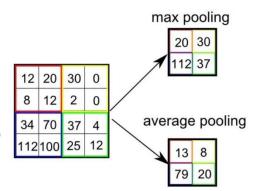




From: https://www.manning.com/books/deep-learning-with-python-second-edition

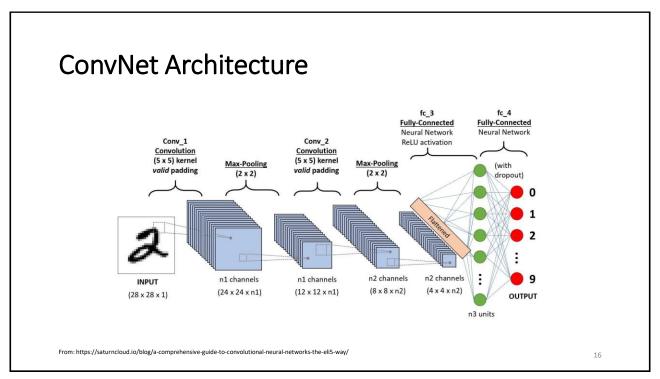
12

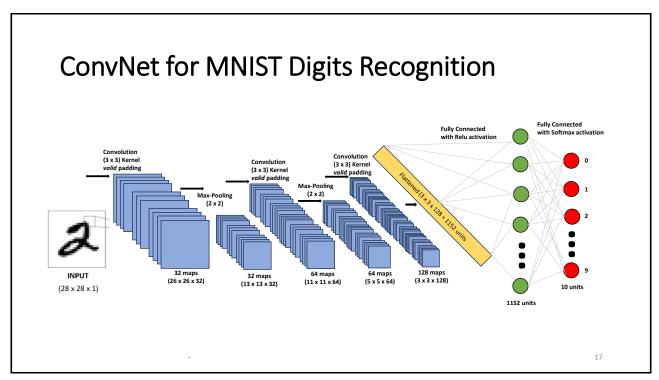
Input and Output Feature Maps

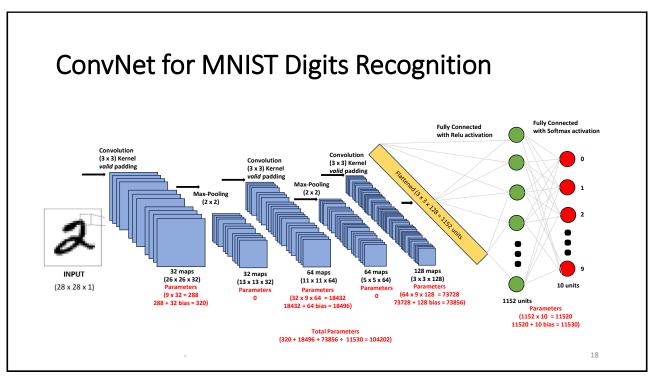

Max Pooling

• Pooling uses a kernel/patch/window

There two popular kinds: **Max pooling**, Average Pooling


 It is purely an arithmetic operation that helps further downsample a feature map (i.e. performs dimensionality reduction useful for reducing computational load).


• We typically use a 2x2 window.



15

15

Over to Colab

 https://colab.research.google.com/drive/1XqXJiz20EAgHStE2qsPiFa2r kL91uQwp?usp=sharing

19

19

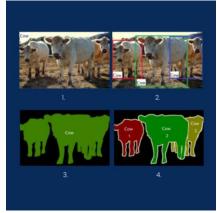
ConvNet Architecture Patterns

· Overfitting/Dropout

When models tend to overfit, a way to resolve overfitting is to use **dropout**. This is called a **regularization technique**.

A dropout layer can be added in between layers. Typically, a dropout layer eliminates (sets to 0) 20-50% of the outputs (dropout value can be set during model/layer specification).

· Data/Batch Normalization


Normalizing the values on inputs and outputs helps with gradient propagation and allows for deeper networks. Hence liberally used in very deep network architectures.

Data Augmentation

When datasets are small, "new" data can be created by **transforming** images in the dataset using flipping, rotation, zooming, etc. to augment the dataset with transformed images. Helps avoid overfitting and leads to better generalization.

ConvNets Applications

- Input Image (1)
- Image classification
- Image Segmentation (3, 4)
- Object Detection (3)

From: https://www.smart-interaction.com/2022/07/14/computer-vision-the-ultimate-guide-on-the-4-main-tasks/

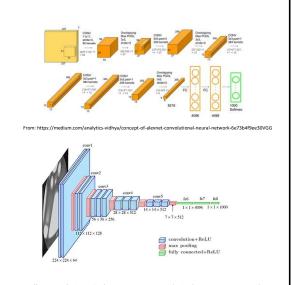
21

21

CovNet Architectures

AlexNet

Alex Krizhevsky, Ilya SutsKever, Geoffrey Hinton, University of Totonto, 2017.


One of the early CNNs to use GPUs to speed up training (in 2012).

VGGNet

Karen Simonyan and Andrew Zisserman, University of Oxford, 2014.

Groundbreaking DL model for Object Recognition.

• There are many more.

22

References

- F. Chollet: Deep Learning with Python, Second Edition, Manning2021.
- A. Geron: *Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow* 2nd Edition. O'Reilly, 2019.
- M. Mitchell: *Artificial Intelligence: A Guide For Thinking Humans,* Farrar, Strouss, Giroux, 2019.
- M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books, 2020.