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Deep Learning Revolution

* Deep Learning refers to deep neural networks
(i.e. many hidden layers)

* The “deep” in Deep learning is NOT “learning that is deep”
(i.e. meaningful or sophisticated learning!!)

* The “deep” ONLY refers to the “depth in layers” of the neural
network.

* Convolution Networks are a kind of Deep Neural network.
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Taking Inspiration from the Visual Cortex

* Hubel & Wiesel’s experiments with cats and primates

Visual cortex is a hierarchical series of layers of neurons.
Layers communicate back and forth extensively.

Layers act as feature detectors (edges, shapes, objects, etc).

Each neuron receives input corresponding to a specific small region of
the visual scene in a neuron’s receptive field).

Neurons activate only if their receptive field contains a particular kind
of edge/feature (e.g. horizontal edge, vertical edge, angular edge, etc)

Lower-level neurons feed into higher level layers of the visual cortex for
detecting shapes, objects, faces, etc.

* This is still a gross simplification. The brain is much more
complex!

Image From: https://www.news-medical.net/life-sciences/How-do-Visual-Neurons-Work.aspx

Convolution Networks — Short History

* Taking inspiration from Hubel & Wiesel...

* From Cognitron, to NeoCognitron (Fukushima, 1970s)

Showed how a hierarchical network (using Relu!) could learn using

unsupervised means.

* To Convolutional Neural Networks (1989) used for hand-written
zipcodes. Developed by Yann LeCun (at AT&T Bell Labs). In 1995,
LeCun et al developed LeNet-5 to classify handwritten digits (32x32
pixel images). Used to recognize numbers on checks by banks.
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From: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/

Dense Networks versus Convolution Networks

* Layers in dense networks learn global patterns in
the input

E.g. MINIST Digit recognition: we flattened 28x28

images into 784 units and fed them into the
hidden layer.

* Convolution Networks learn local patterns in input

e.g. They look for patterns in small 2D windows
(using patches/filters/kernels) of input images.

* Convolution Networks learn spatial hierarchies of
patterns (e.g., edges, larger patterns, etc.)
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Convolution Networks: Core Idea

* Convolution Networks learn local patternsin “cat”
input
. . —F
e.g. They look for patterns in small 2D windows SO

(using patches/filters/kernels) of input images.
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* Convolution Networks learn spatial hierarchies
of patterns (e.g., edges, larger patterns, etc.)

Convolution Networks: Basic Elements

* Convolution (using filters/patches/kernels)

Small patches of input image/map are filtered to recognize local features

* Feature Maps

Starting with an input image (e.g. 28x28x1)
Using a 3x3 filter to get K output maps (26x26xK)

* Max Pooling

A way of down sampling a feature map.
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ConvNet Architecture: Convolutions
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From: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
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Filters/Patches/Kernels

Response map,

quantifying the presence

of the filter's pattern at
Original input different locations

Single filter

From: https://www.manning.com/books/deep-learning-with-python-second-edition
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From: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/
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Filters: Padding

* “valid” Padding

No padding of input is done.
Reduces the width and height of
resulting map.

* “same” Padding

Pads input in such a way to preserve
the width and height of the resulting
map.
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From: https://www.manning.com/books/deep-learning-with-python-second-edition
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Input and Output Feature Maps
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ConvNet Architecture: Pooling
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Max Pooling

* Pooling uses a kernel/patch/window

There two popular kinds: Max pooling,

Average Pooling

* It is purely an arithmetic operation that

helps further downsample a feature map
(i.e. performs dimensionality reduction

useful for reducing computational load).

* We typically use a 2x2 window.

max pooling
20|30
112 37
12120 30| 0
8 (12| 2
34/70| 37| 4 average pooling
112/100| 25| 12 13] 8
79120
15

15
ConvNet Architecture
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From: https://saturncloud.io/blog/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way/ 16
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Over to Colab

* https://colab.research.google.com/drive/1XaXJiz20EAgHStE2qgsPiFa2r
kL91uQwprusp=sharing
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ConvNet Architecture Patterns

* Overfitting/Dropout

Whlsn models tend to overfit, a way to resolve overfitting is to use dropout. This is called a regularization
technique.

A dropout layer can be added in between layers. Tyr)ically, a dro#)out layer eliminates (sets to 0) 20-50% of
(dropou / icat Y

the outputs t value can be set during model/layer speci ion

* Data/Batch Normalization

Normalizing the values on inputs and outputs helps with gradient propagation and allows for deeper
networks. Hence liberally used in very deep network architectures.

* Data Augmentation
When datasets are small, “new” data can be created by transforming images in the dataset using flipi)inﬁ,
i eads to

rotation, zooming, etc. to augment the dataset with transformed images. Helps avoid overfitting and
better generalization.
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ConvNets Applications
* Input Image (1)

* Image classification

* Image Segmentation (3, 4)

* Object Detection (3)

From: https://www.smart-interaction.com/2022/07/14/computer-vision-the-ultimate-guide-on-the-4-main-tasks/
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* VGGNet

CovNet Architectures

* AlexNet

Alex Krizhevsky, llya SutsKever, Geoffrey Hinton,
University of Totonto, 2017.

One of the early CNNs to use GPUs to speed up
training (in 2012).

Karen Simonyan and Andrew Zisserman,
University of Oxford, 2014.

Groundbreaking DL model for Object
Recognition.

* There are many more. w or
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