CMSC 373 Artificial Intelligence
Fall 2025
14-Training

Deepak Kumar
Bryn Mawr College

Review

Adam \

Backpropagation
Bias
Binary Cross Entropy
Categorical Cross Entropy
Epochs
Exponential
Forward Pass
Full Batch SGD
Gradient Descent
Hyperparameters
Labelled Dataset
Learning Rule
Loss Function
Mean Absolute Error
Mean Squared Error
Mini Batch SGD
Model
Optimizer
Parameters
Relu
RMSProp
SGD
Sigmoid
Softmax

Tanh
\ True SGD J

Backpropagation Network (Updated)

Net Input
i=n
[= z Wi X; + E
i=1

Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

Loss Functions

Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL Divergence,
Mean Squared Error, Mean Absolute Error, Cosine Similarity, etc.

Optimizer (Learning Rule)

SGD, RMSprop, AdaGrad, Adam, Adadelta, Adamax, Namad, etc.

Bias Inputs

N inputs

Input Layer

Hidden Layer

Backpropagation: Gradient Descent

* |In higher dimensional weight vectors

(typical ML situations), the error
surface can be quite complex.

00ty

RS R
i h,,e.;.;;ﬁ%:fﬁﬁi::ﬂ?‘ﬁ?ﬂ:

sl

, <)

7
] ﬂﬂf'fr %
’f' *‘- f,’:';:’;:
i tg'% ;:3;;; >

From: https://poissonisfish.com/2023/04/11/gradient-descent/

Weight, x _/"/
/'//

X

“error bow!”

-.______/_Veight, y

From: https://builtin.com/data-science/gradient-descent

Popular Activation Functions

15

1.0+

0.5

0.0k

0.75}

0.50

/ : 0.25

0.00

0.5
=20

Relu — Rectified Linear Unit: f(I) = max(0,1) Sigmoid: f(I) = 1+ol

=1.5

=1.0

-0.5 0.0 0.5 1.0 15

1

Both are non-linear.
Relu is easier to compute than Sigmoid. Hence commonly used in Deep networks.

Sigmoid constrains activation, Relu doesn’t.
Networks with Relu activations tend to show better convergence over Sigmoid.
Too many zero activations in Relu networks can be a problem.

Popular Activation Functions

e Softmax

Converts a vector of values to a vector of probabilities (i.e. a probability

distribution). .
Elements of the output vector are in range (0,1) and sum to 1.
Typically used as a last layer in a classification network.

Computation(for an Output vector o of length, n, with inputs I:

eli

0; = ”

j=1

* Enables use of a cross-entropy loss function (since the outputs are a
probability distribution).

el

Backpropagation Network (Updated)

* Net Input Bias Inputs

i=n
[= z Wi X; + E
i=1

e Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

* Loss Functions N inputs
Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL Divergence, :
Mean Squared Error, Mean Absolute Error, Cosine Similarity, etc.

* Optimizer (Learning Rule)

SGD, RMSprop, AdaGrad, Adam, Adadelta, Adamax, Namad, etc.
See: Optimizers in Deep Learning.

Input Layer Hidden Layer

https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0

The Learning Paradigm

Test Dataset Actual Data
, o ' Finished
Learning/Training Tralgeld Model
Algorithm Mode
v |

Outputs Outputs

Accuracy

Model Design Labelled

Training Dataset

How NN Learning Works

Input X
—= Weights |— =ayer
(data transformation)
. Layer
We:f;hts s (data transformation)
Weight Predictions True targets
update Y Y
Optimizer @

Loss score]

From: Chollet, 2021.

How NN Learning Works

Input X

'

Layer
(data transformation)

— -] Weights -

* = [Forward Pass

Layer
(data transformation)

'

Weights [—

Y Y

Weight Predictions True targets
—
update

N <
G

Loss score]

Optimizer

From: Chollet, 2021.

How NN Learning Works

Weight
update

Optimizer

From: Chollet, 2021.

Input X

'

— -] Weights -

(data transformation)

Layer

'

Weights [—

(data transformation)

Layer

'

[

\Ili'l

Predictions J [True targets
Y

)

N <
G

Loss score]

‘

= Error Computation
(Loss)

11

How NN Learning Works

Weight —

Adjustment

Weight
update

Optimizer

From: Chollet, 2021.

Input X

'

— -] Weights -

(data transformation)

Layer

'

Weights [—

(data transformation)

Layer

'

[

\Ili'l

Predictions J [True targets

¥

)

N <
G

Loss score]

MNIST Digit Recognition: The Design

A 3-layer network: input, hidden, and output layers
Input will be 28x28=784 units

10 outputs, one for each digit. 512 units in hidden
layer.

Parameters
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

Hyperparameters

3 Layers

784 Units in input layer

512 units in hidden layer (Sigmoid/Relu)

10 Units in output layer (Softmax)

Loss: Mean Squared Error/Categorical Cross-Entropy
Optimizer: (SGD RMSProc\oL,

Learning Rate: ,6‘ (decided by the optimizer)
Accuracy Metric: Accuracy (% Correct)

epochs (? Start with a max of 10)

A0

0O
O |

Inpul; Layer O

28x28=784 units

O

Hiddén Layer
512 Units

i

-

Output layer units

OOO0O0O0O0OOOO

Commonsense Baseline Accuracy

* Before we begin, we should always estimate a baseline accuracy.

That is, given any data set, if we were to randomly assign an output,
what would be the accuracy?

For binary classification, the baseline is 50% accuracy.

For MNIST Digits classification, the baseline is 10% accuracy.

* Any neural network model we train should be able to perform far
better!

Introducing Keras e

* Deep Learning API for Python (2016-17)

* Built on top of TensorFlow (2015) N T TT)

e Can run on a typical CPU, or can be accelerated with specialized
hardware, if available. GPUs (Graphics Processing Units), TPUs (Tensor

Processing Units)

* Makes Neural Network design, implementation, and exploration akin
to building with LEGOs!

15

Typical Keras Workflow

* Acquire, prepare, and load the dataset

Keras has a few predefined datasets available: MNIST Digits, CIFAR10, CIFAR100, IMDB Reviews for
sentiment classification, Reuters Newswire classification, Fashion MNIST, Boston Housing price
regression (see https://keras.io/api/datasets/)

* Design and Build the Model

How many layers to use? How many units in each later? What activation function to use? (see
https://keras.io/api/layers/activations/)

* Compile the Model

Decide which optimizer to use, loss function, accuracy metric

* Train/Fit the Model

Provide the training data and its labels, number of epochs to train, batch size

* Test/Validate the Model

Use the test data to test how well the trained model performs

https://keras.io/api/datasets/
https://keras.io/api/layers/activations/

Over to Colab...

e See Lab for Recognizing Handwritten Digits

(https://colab.research.google.com/drive/1fmKbmOnDpS4D_ WMYE;]
1XjRjPt6fI5GWz?usp=sharing)

17

https://colab.research.google.com/drive/1fmKbmOnDpS4D_WMYEj1XjRjPt6fJ5GWz?usp=sharing
https://colab.research.google.com/drive/1fmKbmOnDpS4D_WMYEj1XjRjPt6fJ5GWz?usp=sharing

Reflection from Colab Work

* We defined our network design and all the hyperparameters.
* We used Sigmoid for hidden layer activations and Softmax for output layer activations.

* We used Sparse Categorical Cross Entropy as our loss function, RMSProp as our
optimizer and accuracy (% correct) as our accuracy metric.

* We trained the model for 10 epochs using mini batch SGD.
Accuracy obtained: XXX%
Time for 10 epochs: XXX seconds

* We tested the trained model for 5 test inputs to examine the results for correctness.
Correct/5

* We checked the image of one of the test digits to confirm.

* We performed an evaluation of the model on the test dataset.
Loss: XXX
Accuracy: XXX
Time Taken: XXX seconds

18

Testing & Validation

Unlike the Perceptron, a NN training may not learn 100% of the training data correctly. You must evaluate and
decide on an acceptable accuracy level for the model.

Keras facilitates an examination of the model during and after training.

Epoch 1/20
469/469 [] - 7s 4ms/step - loss: 0.3627 - accuracy: 0.8951
Epoch 2/20
469/469 [] - 2s 3ms/step - loss: 0.2128 - accuracy: 0.9366

Epoch 20/20
469/469 [] - 2s 3ms/step - loss: 0.0844 - accuracy: 0.9747

* Asyou can see, The loss is decreasing, and accuracy is increasing as the epochs progress.

* Training Loss & Training Accuracy
The value of the loss function during training is Training Loss. The accuracy during training is Training Accuracy.

* Validation Loss & Validation Accuracy
The value of the loss function during testing is Validation Loss. The accuracy during testing is Validation Accuracy.

19

Over to Colab...

e Testing the MINIST Model

(https://colab.research.google.com/drive/1upz1hi9lt1hiGZcqlqgUEDDDb
tVV2jjmWR#scrollTo=1AKjUpcMP97q)

20

https://colab.research.google.com/drive/1upz1hi9It1hiGZcqIqUEDDbtVV2jjmWR#scrollTo=1AKjUpcMP97q
https://colab.research.google.com/drive/1upz1hi9It1hiGZcqIqUEDDbtVV2jjmWR#scrollTo=1AKjUpcMP97q
https://colab.research.google.com/drive/1upz1hi9It1hiGZcqIqUEDDbtVV2jjmWR#scrollTo=1AKjUpcMP97q

Training & Validation Loss and Accuracy

Q.7
® Training loss 1001 ¢ Training acc ° ® s o0 ® g 0 g @
0.6dl— Validation loss —— Validationacc o @ o
! o
®
051 @ 0.95 o
o]
0.4
0 @ 0.90 ¢
S s
[]
0.2 - = 0.85
[]
0.1- e,
e, 0.80
@ .80 -
0.0 - ® o0 ® @0 g 9 &
2.5 5.0 75 100 125 150 17.5 20.0 2.5 5.0 75 100 125 150 175 200
Epochs Epochs

* Notice that the validation loss and validation accuracy both diverge after ~ 4t epoch.
 The model performs better on training data doesn’t necessarily do well on the testing data.

* This is called overfitting.

Underfitting and Overfitting

* |nitially, as the training proceeds, the lower
the loss on training data, the lower theloss ., ——
on test data. This is underfitting. The - e e
network hasn’t yet modeled the all the value | %\ Underfitting
patterns in the training data. 3

* As training proceeds further, the testing 3\ Ouartlng >~
stops improving and starts degrading: This T o

is overfitting. The network is starting to " e =
learn patterns specific to the trainingdata. | Tttt

Training time

* Overfitting can occur when the training
data is noisy, ambiguous, or involves
uncertainty.

Noisy Data

label: 7 - index:212

label: 4 - index:59915 label: 3 - index: 10994 labal: 5 - index:40144

label: 9 - index: 14582

Label: 9 Label: 7 Label: 4 Label: 3 Label: 5

23

From a Random Model to Overfitting or

Robust Fit

Befare training:
the model starts

with a random initial state.

QOO. ®)
@
O...@.

Q -2
%OQ ..‘.

O @

Beginning of training:
the model gradually
moves toward a better fit.

O.O..

G

Py Ge®
O e
©C o @

Test time: performance
of robustly fit model
on new data points

Do.o.
0Ce® e ®

0009

o 0%e

Further training: a robust
fit is achieved, transitively,
in the process of morphing

the model from its initial

state to its final state.

.O
Oo.oo.
OO.. o

Cso "

Test time: performance
of overfit model
on new data points

@@ ."..
ooo. g @
O

oY O™ ®

oO.

Final state: the model
overfits the training data,
reaching perfect training loss.

From: Chollet, 2021

24

From a Random Model to Overfitting or
Robust Fit

Before training:
the model starts
with a random initial state.

@ _®
290,00
L Q) @
(‘j'QO'o .9(330 i

Q0 & 0g®
o e eF
@) “’OO o

Beginning of training:
the model gradually
moves toward a better fit.

Test time: performance
of robustly fit model
on new data points

From: Chollet, 2021, and

https://medium.com/@datascienceeurope/do-you-know-overfitting-and-underfitting-f27f87ac2f37

Further training: a robust
fit is achieved, transitively,
in the process of morphing

the model from its initial

state to its final state.

Test time: performance
of overfit model
on new data points

o Q@.Oo
oo:j'o. ‘o ®
e} O‘m:.

Final state: the model
overfits the training data,
reaching perfect training loss

Error

Epochs

[,'u " ll"

Erron

___ﬁ____-
[:1." " i=..-
25

Training Data, Validation Data, Testing Data

Entire Dataset

\

Validation Testing

- 0
Training Dataset (70%) Dataset (15%) | Dataset (15%)

* Training dataset is for use during training

* Validation dataset is to estimate loss/accuracy of the model to tune
the hyperparameters

* Testing dataset is for evaluating the model after training. (how well
does it generalize?)

Review

-

Adam
Backpropagation
Bias
Binary Cross Entropy

~

Categorical Cross Entropy
Commonsense Baseline Accuracy

Epochs
Exponential
Forward Pass
Full Batch SGD
Gradient Descent
Hyperparameters
Keras
Labelled Dataset
Learning Rule
Loss Function
Mean Absolute Error
Mean Squared Error
Mini Batch SGD
Model

/ Optimizer

Overfitting
Parameters
Relu
RMSProp
Scikit-Learn
SGD
Sigmoid
Softmax
Tanh
Testing Data
Training Accuracy
Training Data
Training Loss
True SGD
Underfitting
Validation Accuracy
Validation Data

~

\ Validation Loss J

27

References

* M. Caudill and C. Butler: Understanding Neural Networks, Volume 1,
MIT Press, 1993.

* F. Chollet: Deep Learning with Python, Second Edition, Manning2021.

* A Geron: Hands-on Machine Learning with SciKit-Learn, Keras and
TensorFlow, Oreilly, 2019.

* M. Mitchell: Artificial Intelligence: A Guide For Thinking Humans,
Farrar, Strouss, Giroux, 2019.

* M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books,
2020.

	CMSC 373 Artificial Intelligence�Fall 2025�14-Training
	Review
	Backpropagation Network (Updated)
	Backpropagation: Gradient Descent
	Popular Activation Functions
	Popular Activation Functions
	Backpropagation Network (Updated)
	The Learning Paradigm
	How NN Learning Works
	How NN Learning Works
	How NN Learning Works
	How NN Learning Works
	MNIST Digit Recognition: The Design
	Commonsense Baseline Accuracy
	Introducing Keras
	Typical Keras Workflow
	Over to Colab…
	Reflection from Colab Work
	Testing & Validation
	Over to Colab…
	Training & Validation Loss and Accuracy
	Underfitting and Overfitting
	Noisy Data
	From a Random Model to Overfitting or Robust Fit
	From a Random Model to Overfitting or Robust Fit
	Training Data, Validation Data, Testing Data
	Review
	References

