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Backpropagation Network (Updated)

Net Input
i=n
[ = z Wi X; + E
i=1

Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

Loss Functions

Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL Divergence,
Mean Squared Error, Mean Absolute Error, Cosine Similarity, etc.

Optimizer (Learning Rule)

SGD, RMSprop, AdaGrad, Adam, Adadelta, Adamax, Namad, etc.

Bias Inputs

N inputs

Input Layer

Hidden Layer



Backpropagation: Gradient Descent

* |In higher dimensional weight vectors

(typical ML situations), the error
surface can be quite complex.
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Popular Activation Functions
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Both are non-linear.
Relu is easier to compute than Sigmoid. Hence commonly used in Deep networks.

Sigmoid constrains activation, Relu doesn’t.
Networks with Relu activations tend to show better convergence over Sigmoid.
Too many zero activations in Relu networks can be a problem.



Popular Activation Functions

e Softmax

Converts a vector of values to a vector of probabilities (i.e. a probability

distribution). .
Elements of the output vector are in range (0,1) and sum to 1.
Typically used as a last layer in a classification network.

Computation(for an Output vector o of length, n, with inputs I:
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* Enables use of a cross-entropy loss function (since the outputs are a
probability distribution).
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Backpropagation Network (Updated)

* Net Input Bias Inputs

i=n
[ = z Wi X; + E
i=1

e Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

* Loss Functions N inputs
Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL Divergence, :
Mean Squared Error, Mean Absolute Error, Cosine Similarity, etc.

* Optimizer (Learning Rule)

SGD, RMSprop, AdaGrad, Adam, Adadelta, Adamax, Namad, etc.
See: Optimizers in Deep Learning.

Input Layer Hidden Layer


https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0

The Learning Paradigm
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How NN Learning Works
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How NN Learning Works
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How NN Learning Works

Weight
update

Optimizer

From: Chollet, 2021.
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How NN Learning Works
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MNIST Digit Recognition: The Design

A 3-layer network: input, hidden, and output layers
Input will be 28x28=784 units

10 outputs, one for each digit. 512 units in hidden
layer.

Parameters
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

Hyperparameters

3 Layers

784 Units in input layer

512 units in hidden layer (Sigmoid/Relu)

10 Units in output layer (Softmax)

Loss: Mean Squared Error/Categorical Cross-Entropy
Optimizer: (SGD RMSProc\oL,

Learning Rate: ,6‘ (decided by the optimizer)
Accuracy Metric: Accuracy (% Correct)

# epochs (? Start with a max of 10)
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Commonsense Baseline Accuracy

* Before we begin, we should always estimate a baseline accuracy.

That is, given any data set, if we were to randomly assign an output,
what would be the accuracy?

For binary classification, the baseline is 50% accuracy.

For MNIST Digits classification, the baseline is 10% accuracy.

* Any neural network model we train should be able to perform far
better!



Introducing Keras e

* Deep Learning API for Python (2016-17)

* Built on top of TensorFlow (2015) N T TT)

e Can run on a typical CPU, or can be accelerated with specialized
hardware, if available. GPUs (Graphics Processing Units), TPUs (Tensor

Processing Units)

* Makes Neural Network design, implementation, and exploration akin
to building with LEGOs!
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Typical Keras Workflow

* Acquire, prepare, and load the dataset

Keras has a few predefined datasets available: MNIST Digits, CIFAR10, CIFAR100, IMDB Reviews for
sentiment classification, Reuters Newswire classification, Fashion MNIST, Boston Housing price
regression (see https://keras.io/api/datasets/)

* Design and Build the Model

How many layers to use? How many units in each later? What activation function to use? (see
https://keras.io/api/layers/activations/)

* Compile the Model

Decide which optimizer to use, loss function, accuracy metric

* Train/Fit the Model

Provide the training data and its labels, number of epochs to train, batch size

* Test/Validate the Model

Use the test data to test how well the trained model performs



https://keras.io/api/datasets/
https://keras.io/api/layers/activations/

Over to Colab...

e See Lab for Recognizing Handwritten Digits

(https://colab.research.google.com/drive/1fmKbmOnDpS4D_ WMYE;]
1XjRjPt6fI5GWz?usp=sharing)
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https://colab.research.google.com/drive/1fmKbmOnDpS4D_WMYEj1XjRjPt6fJ5GWz?usp=sharing
https://colab.research.google.com/drive/1fmKbmOnDpS4D_WMYEj1XjRjPt6fJ5GWz?usp=sharing

Reflection from Colab Work

* We defined our network design and all the hyperparameters.
* We used Sigmoid for hidden layer activations and Softmax for output layer activations.

* We used Sparse Categorical Cross Entropy as our loss function, RMSProp as our
optimizer and accuracy (% correct) as our accuracy metric.

* We trained the model for 10 epochs using mini batch SGD.
Accuracy obtained: XXX%
Time for 10 epochs: XXX seconds

* We tested the trained model for 5 test inputs to examine the results for correctness.
# Correct/5

* We checked the image of one of the test digits to confirm.

* We performed an evaluation of the model on the test dataset.
Loss: XXX
Accuracy: XXX
Time Taken: XXX seconds
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Testing & Validation

Unlike the Perceptron, a NN training may not learn 100% of the training data correctly. You must evaluate and
decide on an acceptable accuracy level for the model.

Keras facilitates an examination of the model during and after training.

Epoch 1/20
469/469 [ ] - 7s 4ms/step - loss: 0.3627 - accuracy: 0.8951
Epoch 2/20
469/469 [ ] - 2s 3ms/step - loss: 0.2128 - accuracy: 0.9366

Epoch 20/20
469/469 [ ] - 2s 3ms/step - loss: 0.0844 - accuracy: 0.9747

* Asyou can see, The loss is decreasing, and accuracy is increasing as the epochs progress.

* Training Loss & Training Accuracy
The value of the loss function during training is Training Loss. The accuracy during training is Training Accuracy.

* Validation Loss & Validation Accuracy
The value of the loss function during testing is Validation Loss. The accuracy during testing is Validation Accuracy.
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Over to Colab...

e Testing the MINIST Model

(https://colab.research.google.com/drive/1upz1hi9lt1hiGZcqlqgUEDDDb
tVV2jjmWR#scrollTo=1AKjUpcMP97q)
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https://colab.research.google.com/drive/1upz1hi9It1hiGZcqIqUEDDbtVV2jjmWR#scrollTo=1AKjUpcMP97q
https://colab.research.google.com/drive/1upz1hi9It1hiGZcqIqUEDDbtVV2jjmWR#scrollTo=1AKjUpcMP97q
https://colab.research.google.com/drive/1upz1hi9It1hiGZcqIqUEDDbtVV2jjmWR#scrollTo=1AKjUpcMP97q

Training & Validation Loss and Accuracy
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* Notice that the validation loss and validation accuracy both diverge after ~ 4t epoch.
 The model performs better on training data doesn’t necessarily do well on the testing data.

* This is called overfitting.



Underfitting and Overfitting

* |nitially, as the training proceeds, the lower
the loss on training data, the lower theloss ., ——
on test data. This is underfitting. The - e e
network hasn’t yet modeled the all the value | %\ Underfitting
patterns in the training data. 3

* As training proceeds further, the testing 3\ Ouartlng >~
stops improving and starts degrading: This T o

is overfitting. The network is starting to " e =
learn patterns specific to the trainingdata. | Tttt

Training time

* Overfitting can occur when the training
data is noisy, ambiguous, or involves
uncertainty.



Noisy Data

label: 7 - index:212

label: 4 - index:59915 label: 3 - index: 10994 labal: 5 - index:40144

label: 9 - index: 14582

Label: 9 Label: 7 Label: 4 Label: 3 Label: 5
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From a Random Model to Overfitting or

Robust Fit

Befare training:
the model starts

with a random initial state.
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Final state: the model
overfits the training data,
reaching perfect training loss.

From: Chollet, 2021
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From a Random Model to Overfitting or
Robust Fit

Before training:
the model starts
with a random initial state.
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Beginning of training:
the model gradually
moves toward a better fit.

Test time: performance
of robustly fit model
on new data points

From: Chollet, 2021, and

https://medium.com/@datascienceeurope/do-you-know-overfitting-and-underfitting-f27f87ac2f37

Further training: a robust
fit is achieved, transitively,
in the process of morphing

the model from its initial

state to its final state.

Test time: performance
of overfit model
on new data points
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Training Data, Validation Data, Testing Data

Entire Dataset

\

Validation Testing

- 0
Training Dataset (70%) Dataset (15%) | Dataset (15%)

* Training dataset is for use during training

* Validation dataset is to estimate loss/accuracy of the model to tune
the hyperparameters

* Testing dataset is for evaluating the model after training. (how well
does it generalize?)
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