
10/29/2025

1

CMSC 373 Artificial Intelligence
Fall 2025

13-Backpropagation
Deepak Kumar

Bryn Mawr College

The Perceptron (1958)

2

• A single “neuron” (unit)
aka Threshold Logic Unit (TLU)

• Transfer Function
T is the Threshold value (assume 𝑇 =  0)

𝐼 =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖

𝑦 =  ቊ
+1, if 𝐼 ≥ 𝑇
−1, if 𝐼 < 𝑇

x1

xn

inputs output
y

wn

w1

1

2



10/29/2025

2

Learning in Neural Networks (so far)

• A labelled dataset
e.g., Iris Dataset, MNIST Numbers Dataset

• A model for the network
e.g., the Perceptron (single TLU)
Parameters refer to the number of weights

• A forward pass/prediction algorithm
Compute net input. Compute activation.

• A Learning Rule/Algorithm
Learning occurs by changing weights.
Specifies change in the weights using the Error/Loss
In Perceptrons, weights are changed after every prediction.

• Several epochs of training are needed (how many???)
This is a hyperparameter.

𝐼 =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖

𝑦 =  ቊ
+1, if 𝐼 ≥ 𝑇
−1, if 𝐼 < 𝑇

Perceptron Learning Rule: 𝒘𝒏𝒆𝒘 = 𝒘𝒐𝒍𝒅 + β𝑦* ഥ𝒙

3

Epochs 
Forward Pass
Hyperparameters
Labelled Dataset
Learning Rule 
Model
Parameters

Introducing Bias

• Instead of using an arbitrary Threshold value, we can turn it 
into an input (=1)

• The weight on the bias, 𝑤0 can then be learned using the 
same algorithm.

ഥ𝒘 = 𝑤0, 𝑤1, 𝑤2

ഥ𝒙 = 𝑥0, 𝑥1, 𝑥2

• More often, in other networks, the net input is determined 
using the following (and no bias is used for output layer):

𝐼 =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

x1

x2

inputs output
y

w2

w1

T=0

x1

x2

inputs output
y

w2

w1

w0

1

4

3

4



10/29/2025

3

Multi-Layer Perceptron Network

• Example: This could be a network that 
can recognize all three categories of 
irises from the Iris dataset.

4 inputs, 3 outputs (Hyperparameters)
4x4 (input to hidden) + 4x3 (hidden to 
output) weights + 7 bias inputs

#Parameters = 16+12+7 = 35 

• Since all units are linear TLUs this 
network can only learn linear 
functions.

• We need to make each unit non-linear.

4 inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

5

Backpropagation Network (Classic Version)

• Net Input

I =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Function (Sigmoid)

f I =
1

1 + 𝑒𝐼

• Learning Rule

∆𝑤𝑖𝑗 =  𝛽 ∗ E ∗ f(I𝑗)

• Error/Loss

Ej
output

= 𝑦𝑗
desired − 𝑦𝑗

actual

Ei
hidden =

df(Ii
hidden)

dI
෍

𝑗=1

𝑛

( 𝑤𝑖𝑗Ej
output

)

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

6

5

6



10/29/2025

4

Backpropagation Network (Classic Version)

• Net Input

I =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Function (Sigmoid)

f I =
1

1 + 𝑒I

• Learning Rule

𝑤𝑖𝑗
new =  𝑤𝑖𝑗

old +  𝛽 ∗ E ∗ f(I𝑗)

where 𝛽 is the Learning Constant (0 < 𝛽 < 1), E is the error/loss

• Error/Loss (E)

Ej
output

= 𝑦𝑗
desired − 𝑦𝑗

actual

Ei
hidden =

df(Ii
hidden)

dI
෍

𝑗=1

𝑛

( 𝑤𝑖𝑗Ej
output

)

From: https://en.wikipedia.org/wiki/Sigmoid_function

Sigmoid Function
• Output is always between 0 and 1
• Its derivative (slope) is always positive

•
df(I)

dI
= f(I)(1 − f(I)

I

7

f(I)

Backpropagation Network (Classic Version)

• Net Input

I =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Function (Sigmoid)

f I =
1

1 + 𝑒I

• Learning Rule1

𝒘𝒊𝒋
𝐧𝐞𝐰 =  𝒘𝒊𝒋

𝐨𝐥𝐝 +  𝜷 ∗ 𝐄 ∗ 𝐟(𝑰𝒋)

where 𝛽 is the Learning Constant (0 < 𝛽 < 1), E is the error/loss

• Error/Loss (E)

𝐄𝐣
𝐨𝐮𝐭𝐩𝐮𝐭

= 𝒚𝒋
𝐝𝐞𝐬𝐢𝐫𝐞𝐝 − 𝒚𝒋

𝐚𝐜𝐭𝐮𝐚𝐥

Ei
hidden =

df(Ii
hidden)

dI
෍

𝑗=1

𝑛

( 𝑤𝑖𝑗Ej
output

)

N inputs

Hidden Layer

Output Layer

Input Layer

j

i

𝑦𝑗
actual

𝒘𝒊𝒋

81. Earlier versions used Delta Rule (Adaline): 𝒘𝒏𝒆𝒘 = 𝒘𝒐𝒍𝒅 +
ꞵ𝐸𝒙

𝒙 2

7

8



10/29/2025

5

Backpropagation Network (Classic Version)

• Net Input

I =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Function (Sigmoid)

f I =
1

1 + 𝑒I

• Learning Rule

𝑤𝑖𝑗
new =  𝑤𝑖𝑗

old +  𝛽 ∗ E ∗ f(Ij)

where 𝛽 is the Learning Constant (0 < 𝛽 < 1), E is the error/loss

• Error/Loss (E)

Ej
output

= 𝑦𝑗
desired − 𝑦𝑗

actual

Ei
hidden =

df(Ii
hidden)

dI
෍

𝒋=𝟏

𝒏

( 𝒘𝒊𝒋𝐄𝐣
𝐨𝐮𝐭𝐩𝐮𝐭

)

N inputs

Hidden Layer

Output Layer

Input Layer

i

i

f(Ii)

j

9

Backpropagation Network (Classic Version)

• Net Input

I =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Function (Sigmoid)

f I =
1

1 + 𝑒𝐼

• Learning Rule

∆𝑤𝑖𝑗 =  𝛽 ∗ E ∗ f(I𝑗)

• Error/Loss

Ej
output

= 𝑦𝑗
desired − 𝑦𝑗

actual

Ei
hidden =

df(Ii
hidden)

dI
෍

𝑗=1

𝑛

( 𝑤𝑖𝑗Ej
output

)

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

10

9

10



10/29/2025

6

Backpropagation (Classic) Training Algorithm
set minimum acceptable error and #epochs to train, set 𝛽
set #epochs = 0

repeat

    total error = 0   

    for each pattern in training set do
        do a forward pass
            for each unit in the hidden layer do
                compute net input I, and activation, f(I)
                save f(I) for backpropagation
            for each unit in the output layer do
                compute net input I, and activation f(I)
                output y = f(I)

        do backward pass
            for each unit in the output layer do

                compute error = desired – actual output (Ej
output

= 𝑦𝑗
desired − 𝑦𝑗

actual)

                total error = total error + error

            for each unit in the middle layer do

                compute incoming error = weighted sum of output later errors (σ𝑗=1
𝑛 ( 𝑤𝑖𝑗Ej

output
))

                compute final error = incoming error * f(I) * (1 – I) [derivative)

            for each unit in the output layer do
                for each weight from a hidden layer to unit do
                    compute weight change 𝛽 ∗ error ∗ 𝑓(I) and update weight

            for each unit in the middle layer do
                for each weight from an input layer unit do
                    compute weight change 𝛽 ∗ final error ∗ f(I) and update weight

        #epochs = #epochs + 1

until total error < maximum acceptable error or #epochs reaches limit 11

Example: Recognizing Handwritten Digits

• MNIST Dataset
70,000 images (28x28 pixels), grayscale 
values (in range 0 (white) to 255 (black).

• Training set: 60,000 images

• Testing set: 10,000 images

• Task: Given an image, classify it as [0,1,…,9]

12

11

12



10/29/2025

7

MNIST Digit Recognition: The Design

• Assume we will use a 3-layer network: 
input, hidden, and output

• Input will be 28x28=784 units

• 10 outputs, one for each digit. Say the 
network is shown a 6, we would then 
expect the output of 6 to be high 
(closer to 1.0) compared to others.

• How many hidden units???

13

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

How  many?

Output layer units

MNIST Digit Recognition: The Design

• Assume we will use a 3-layer network: 
input, hidden, and output

• Input will be 28x28=784 units

• 10 outputs, one for each digit. Say the 
network is shown a 6, we would then 
expect the output of 6 to be high 
(closer to 1.0) compared to others.

• How many hidden units???
No known science to this.
Let’s say we have 512 units in hidden 
layer. (Why??)

14

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

512 units

Output layer units

13

14



10/29/2025

8

MNIST Digit Recognition: The Design

• A 3-layer network: input, hidden, and 
output layers

• Input will be 28x28=784 units

• 10 outputs, one for each digit. 512 
units in hidden layer. 

• All units will have a Sigmoid activation 
function.

• How to determine error/loss at 
output? (use our formulation?)

• What should be the value of 𝛽?

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

512 units

Output layer units

MNIST Digit Recognition: The Design

• A 3-layer network: input, hidden, and 
output layers

• Input will be 28x28=784 units

• 10 outputs, one for each digit. 512 units 
in hidden layer. 

• All units will have a Sigmoid activation 
function.

• How to determine error/loss at output? 
(use our formulation?)

• What should be the value of 𝛽?

• How many parameters are there?

16

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

512 units

Output layer units

15

16



10/29/2025

9

MNIST Digit Recognition: The Design

• A 3-layer network: input, hidden, and output 
layers

• Input will be 28x28=784 units

• 10 outputs, one for each digit. 512 units in 
hidden layer. 

• All units will have a Sigmoid activation function.

• How to determine error/loss at output? (use 
our formulation?)

• What should be the value of 𝛽?

• How many parameters are there?
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

17

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

512 units

Output layer units

MNIST Digit Recognition: The Design

• A 3-layer network: input, hidden, and output 
layers

• Input will be 28x28=784 units

• 10 outputs, one for each digit. 512 units in 
hidden layer. 

• All units will have a Sigmoid activation function.

• How to determine error/loss at output? (use our 
formulation?)

• What should be the value of 𝛽?

• How many parameters are there?
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

• What are the hyperparameters?

18

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

How  many?

Output layer units

17

18



10/29/2025

10

MNIST Digit Recognition: The Design

• A 3-leayer network: input, hidden, and output layers

• Input will be 28x28=784 units

• 10 outputs, one for each digit. 512 units in hidden 
layer. (Why??)

• All units will have a Sigmoid activation function.

• How to determine error/loss at output? (use our 
formulation?)

• What should be the value of 𝛽?

• How many parameters are there?
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

• What are the hyperparameters?
# Layers, # Units in each layer, Activation Function, 𝛽, 
# epochs, Minimum acceptable error, etc.

19

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

How  many?

Output layer units

Backpropagation: Gradient Descent

• Learning in a neural network using 
Backpropagation is essentially a 
Gradient Descent process.

• Each change in the weights is an 
attempt to reduce error and 
descend into the lowest possible 
position in the “error bowl” (as 
shown in a 2-D weight vector case)

• In higher dimensional weight vectors 
(typical ML situations), the error 
surface can be quite complex.

20

Error

Weight, x

Weight, y

∆𝑤

𝑤old

𝑤new

“error bowl”

From: https://builtin.com/data-science/gradient-descent

19

20



10/29/2025

11

Backpropagation: Gradient Descent

• In higher dimensional weight vectors 
(typical ML situations), the error 
surface can be quite complex.

21

Error

Weight, x

Weight, y

∆𝑤

𝑤old

𝑤new

“error bowl”

From: https://builtin.com/data-science/gradient-descentFrom: https://poissonisfish.com/2023/04/11/gradient-descent/

Backpropagation: Learning rate

• Learning Rate, 𝛽 (0 < 1)

• The value of 𝛽 determines how fast 
or slow the gradient descent takes 
place.

• Typically, one starts with a higher 
value (say 0.5 or 0.6) and then 
decrease it as the learning/epochs 
progresses. This is called a Learning 
Rate Schedule.

22

From: https://www.ibm.com/topics/gradient-descent

21

22



10/29/2025

12

MNIST Digit Recognition: More Decisions

• In what order do we present the patterns? As they 
are in the training set? Or, randomly?

• Do we do a backpropagation pass after every input?

Choices:

Do a backpropagation pass after every input.

Do the backward pass after all the inputs have been 
seen, and errors recorded.

Do a small batch of data and the do a backward pass.

• Is there a better way to assess error/loss?

• Are there any other weight update mechanisms?

Most of the period from 1986 until now has been 
spent on studying these questions.

23

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units Hidden Layer

512 units

Output layer units

Decisions/Choices...

• In what order do we present the patterns? As they are in 
the training set? Or, randomly?
If patterns are chosen at random (without replacement), 
we call it Stochastic Gradient Descent (SGD)

Choices:

Do a backpropagation pass after every input. True SGD

Do the backward pass after all the inputs have been seen, 
and errors recorded. Full batch SGD

Do a small batch of data and then do a backward pass. Mini 
Batch SGD (each batch is a power of 2)

• Is there a better way to assess error/loss? Loss Functions

• Are there any other weight update mechanisms? 
Optimizers (also manage Learning rate schedules)

Most of the period from 1986 until now has been spent on 
studying these questions.

24

Backpropagation
Bias
Epochs 
Forward Pass
Full Batch SGD
Gradient Descent
Hyperparameters
Labelled Dataset
Learning Rule
Loss Function
Mini Batch SGD 
Model
Optimizer
Parameters
SGD
True SGD

23

24



10/29/2025

13

Advances in NN

• Better hardware
Laptops became 5000 times faster between 1990 and 2010
Use of GPUs for faster processing (NVIDIA, AMD). Took off in 2011
Google’s Tensor Processing Units (TPUs), 2016

• Wide availability of datasets and benchmarks
MNIST, ImageNet, etc.

• Better Algorithms
Better activation functions
Better weight initialization schemes
Better optimization schemes (RMSprop, Adam)

• Widely available toolsets for creating and training NNs
Theano, TensorFlow, Scikit Learn, PyTorch, Keras

25

Backpropagation Network (Updated)

• Net Input

I =  ෍

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

• Loss Functions

Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL 
Divergence, Mean Squared Error, Mean Absolute Error, Cosine 
Similarity, etc.

• Optimizer (Learning Rule)

SGD, RMSprop, Adam, Adadelta, Adamax, Namad, etc.

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

26

25

26



10/29/2025

14

Popular Activation Functions

27

Relu – Rectified Linear Unit: 𝑓(𝐼)  =  max(0, 𝐼) Sigmoid: f I =
1

1+𝑒I 

Softmax Activation Function

• Transforms a vector of arbitrary 
numbers into a probability 
distribution.

Each value is in [0.0..1.0]
Summ of all values is 1.0

Useful for multi-class 
classification problems. E.g., 
Recognizing handwritten digits 
(ten possible outcomes [0, ..9])

28

27

28



10/29/2025

15

Vocabulary

• In what order do we present the patterns? As they are in 
the training set? Or, randomly?
If patterns are chosen at random (without replacement), 
we call it Stochastic Gradient Descent (SGD)

Choices:

Do a backpropagation pass after every input. True SGD

Do the backward pass after all the inputs have been seen, 
and errors recorded. Full batch SGD

Do a small batch of data and then do a backward pass. Mini 
Batch SGD (each batch is a power of 2)

• Is there a better way to assess error/loss? Loss Functions

• Are there any other weight update mechanisms? 
Optimizers (also manage Learning rate schedules)

Most of the period from 1986 until now has been spent on 
studying these questions.

29

Adam
Backpropagation
Bias
Binary Cross Entropy
Categorical Cross Entropy
Epochs 
Exponential
Forward Pass
Full Batch SGD
Gradient Descent
Hyperparameters
Labelled Dataset
Learning Rule
Loss Function
Mean Absolute Error
Mean Squared Error
Mini Batch SGD 
Model
Optimizer
Parameters
Relu
RMSProp
SGD
Sigmoid
Softmax
Tanh
True SGD

The Learning Paradigm

30

Learning/Training
Algorithm

Trained
Model

Model Design Labelled
Training Dataset

Test Dataset

Outputs
Accuracy

Finished
Model

Actual Data

Outputs

29

30



10/29/2025

16

How NN Learning Works

31
From: Chollet, 2021.

Introducing Keras

• Deep Learning API for Python (2016-17)

• Built on top of TensorFlow (2015)

• Can run on a typical CPU, or can be accelerated with specialized 
hardware, if available. GPUs (Graphics Processing Units), TPUs (Tensor 
Processing Units)

• Makes Neural Network design, implementation, and exploration akin 
to building with LEGOs!

32

From: Chollet, 2021.

31

32



10/29/2025

17

Typical Keras Workflow

• Acquire, prepare, and load the dataset
Keras has several predefined datasets available: MNIST Digits, CIFAR10, CIFAR100, IMDB Reviews for 
sentiment classification, Reuters Newswire classification, Fashion MNIST, Boston Housing price 
regression (see https://keras.io/api/datasets/)

• Design and Build the Model
How many layers to use? How many units in each later? What activation function to use? (see 
https://keras.io/api/layers/activations/)

• Compile the Model
Decide which optimizer to use, loss function, accuracy metric
https://keras.io/api/optimizers/, https://keras.io/api/losses/, https://keras.io/api/metrics/

• Train/Fit the Model
Provide the training data and its labels, number of epochs to train, batch size

• Test/Validate the Model
Use the test data to test how well the trained model performs

33

Over to Colab…

• See Lab for Recognizing Handwritten Digits

34

33

34

https://keras.io/api/datasets/
https://keras.io/api/layers/activations/
https://keras.io/api/optimizers/
https://keras.io/api/losses/
https://keras.io/api/metrics/
https://colab.research.google.com/drive/1fmKbmOnDpS4D_WMYEj1XjRjPt6fJ5GWz?usp=sharing


10/29/2025

18

References

• M. Caudill and C. Butler: Understanding Neural Networks, Volume 1, 
MIT Press, 1993.

• F. Chollet: Deep Learning with Python, Second Edition, Manning2021.

• A Geron: Hands-on Machine Learning with SciKit-Learn, Keras and 
TensorFlow, Oreilly, 2019.

• M. Mitchell: Artificial Intelligence: A Guide For Thinking Humans, 
Farrar, Strouss, Giroux, 2019.

• Rumelhart, McClelland, and the PDP Research Group: Parallel 
Distributed Processing, Volumes 1 & 2. MIT Press, 1986.

35

35


	Slide 1: CMSC 373 Artificial Intelligence Fall 2025 13-Backpropagation
	Slide 2: The Perceptron (1958)
	Slide 3: Learning in Neural Networks (so far)
	Slide 4: Introducing Bias
	Slide 5: Multi-Layer Perceptron Network
	Slide 6: Backpropagation Network (Classic Version)
	Slide 7: Backpropagation Network (Classic Version)
	Slide 8: Backpropagation Network (Classic Version)
	Slide 9: Backpropagation Network (Classic Version)
	Slide 10: Backpropagation Network (Classic Version)
	Slide 11: Backpropagation (Classic) Training Algorithm
	Slide 12: Example: Recognizing Handwritten Digits
	Slide 13: MNIST Digit Recognition: The Design
	Slide 14: MNIST Digit Recognition: The Design
	Slide 15: MNIST Digit Recognition: The Design
	Slide 16: MNIST Digit Recognition: The Design
	Slide 17: MNIST Digit Recognition: The Design
	Slide 18: MNIST Digit Recognition: The Design
	Slide 19: MNIST Digit Recognition: The Design
	Slide 20: Backpropagation: Gradient Descent
	Slide 21: Backpropagation: Gradient Descent
	Slide 22: Backpropagation: Learning rate
	Slide 23: MNIST Digit Recognition: More Decisions
	Slide 24: Decisions/Choices...
	Slide 25: Advances in NN
	Slide 26: Backpropagation Network (Updated)
	Slide 27: Popular Activation Functions
	Slide 28: Softmax Activation Function
	Slide 29: Vocabulary
	Slide 30: The Learning Paradigm
	Slide 31: How NN Learning Works
	Slide 32: Introducing Keras
	Slide 33: Typical Keras Workflow
	Slide 34: Over to Colab…
	Slide 35: References

