10/29/2025

CMSC 373 Artificial Intelligence
Fall 2025
13-Backpropagation

Deepak Kumar
Bryn Mawr College

The Perceptron (1958)
* Asingle “neuron” (unit) Xlw ,
aka Threshold Logic Unit (TLU) inputs « (—— output
xn/wn'

* Transfer Function
T is the Threshold value (assume T = 0)

l=n
I = E Wi X;
i=1

(+1ifI =T
Y= 1-1ifI<T

10/29/2025

Epochs
Forward Pass

Learning in Neural Networks (so far) pepanes

Learning Rule
Model
Parameters

* Alabelled dataset
e.g., Iris Dataset, MNIST Numbers Dataset

* A model for the network
e.g., the Perceptron (single TLU)
Parameters refer to the number of weights
I= WiX;
A forward pass/prediction algorithm

Compute net input. Compute activation. Y= {ji:g 27

* A Learning Rule/Algorithm
Learning occurs by changing weights.
Specifies change in the weights using the Error/Loss
In Perceptrons, weights are changed after every prediction.

Perceptron Learning Rule: Wy, = Woiq + By* X

* Several epochs of training are needed (how many???)
This is a hyperparameter.

Xy
w‘
y
o o input output

Introducing Bias "

Xy W,
* Instead of using an arbitrary Threshold value, we can turn it

into an input (=1)

* The weight on the bias, w, can then be learned using the 1
same algorithm.

W
Xy 0

w = [wg, wy, w,] inputm
X = [XO, X1, xz] XZ/WZV

output

* More often, in other networks, the net input is determined
using the following (and no bias is used for output layer):

i=n
I = Z Wi X; + E
i=1

10/29/2025

Multi-Layer Perceptron Network

Biaswlnputs

* Example: This could be a network that
can recognize all three categories of
irises from the Iris dataset.

4 inputs, 3 outputs (Hyperparameters)
4x4 (input to hidden) + 4x3 (hidden to dinputs |
outputs)weights + 7 bias inputs

##Parameters = 16+12+7 =35

* Since all units are linear TLUs this utput Layer
network can only learn linear
functions. Input Layer Hidden Layer

* We need to make each unit non-linear.

Backpropagation Network (Classic Version)

* NetInput _ Bias Inputs
I= Z wix; + E
i=1

« Activation Function (Sigmoid)

f(D) =

1+el

* Learning Rule N inputs

Aw;; = B = E = f(1))
¢ Error/Loss

Eoutput _ ersired _ yactual
§ -]

Yj

) df(rhiddeny &
Eihldden — (ldl)Z(WijEjoutput)

= Input Layer Hidden Layer

10/29/2025

Backpropagation Network (Classic Version)

¢ Net Input

1= Z wix; + b f([) 14

« Activation Function (Sigmoid)

1
=172 0.5

¢ Learning Rule

wit = wi"jld + B *Exf(l))

where f8 is the Learning Constant (0 < 8 < 1), E is the error/loss

I L | o) | | J
* Error/Loss (E) _6 _a 2 0 5 4 6
Eputput = y}dESimd - y]g:\ctual From: https://en.wikipedia.org/wiki/Sigmoid_function
s n
ghidden _ df(lih'dden)z(w_ ouputy Sigmoid Function
! a L « Output is always between 0 and 1

Jj=1 - . -
* lts derivative (slope) is always positive

df(1)
- M ma -1

7
Backpropagation Network (Classic Version)
* Net Input ~
I=) wix;+b
i=1
« Activation Function (Sigmoid)
f) = 1+el
* Learning Rule!
wiW = Wil 4 B Ex £(I) N inputs ypetual
where 8 is the Learning Constant (0 < f8 < 1), E is the error/loss
* Error/Loss (E)
E()Ut}"‘"t — y;icsil‘l:d . y;!ctlli!] E
ghidden _ mi(wu]agutput) Q Output Layer
= ' Input Layer Hidden Layer

1. Earlier versions used Delta Rule (Adaline): Wye,, = Worq + I‘XITZ 3

10/29/2025

¢ Net Input
i=n
1= Z wix; + b
i=1

« Activation Function (Sigmoid)

f(D) =

1+e!
¢ Learning Rule

wit = wi'}ld + B *E=f(l))

where f8 is the Learning Constant (0 < 8 < 1), E is the error/loss
* Error/Loss (E)

Eputput desired actual

¥ ¥

. df(hiddeny
Eihldden - (i) Z (Wi,_Einutput)

j=1

Backpropagation Network (Classic Version)

N inputs
i

Input Layer Hidden Layer

9
Backpropagation Network (Classic Version)
* NetInput . Bias leputs
1= i +E T
; wix;
« Activation Function (Sigmoid)
f = 1+e!
¢ Learning Rule N inputs
Awij = B*E*f(l))
¢ Error/Loss
E]})UtPUt ydeswed y]actual
hidden _ mz(i B . Output Layer
j=1 Input Layer Hidden Layer
10
10

10/29/2025

Backpropagation (Classic) Training Algorithm

set minimum acceptable error and #epochs to train, set 8
set #epochs =0

repeat
total error =0

for each pattern in training set do
do a forward pass

for each unit in the hidden layer do
compute net input |, and activation, (1)
save f(l) for backpropagation

for each unit in the output layer do
compute net input |, and activation f(1)
outputy = (1)

do backward pass
for each unit in the output layer do
compute error = desired — actual output (Eioutpm = y/d“irELl - yf"‘“a])
total error = total error + error

for each unit in the middle layer do
compute incoming error = weighted sum of output later errors (X}, (w;; Ei‘)"tpm))
compute final error = incoming error * f(I) * (1 —1I) [derivative)
for each unit in the output layer do
for each weight from a hidden layer to unit do
compute weight change 8 * error * f(I) and update weight
for each unit in the middle layer do
for each weight from an input layer unit do
compute weight change f8 * final error * f(I) and update weight
#epochs = #epochs + 1

until total error < maximum acceptable error or #epochs reaches limit 11

11
Example: Recognizing Handwritten Digits
* MNIST Dataset
70,000 images (28x28 pixels), grayscale 000000600 s0O0I 000D
values (in range 0 (white) to 255 (black). e A N LA
2d 2L AIITIF21222022
23333323%3»33283333
.. . ¥ Y a9 49 ¢fyaq 484
* Training set: 60,000 images 555855585556 55¢55
b GbbLEblbobee¢ ébeelb
* Testing set: 10,000 images T777711TINTI 2R 77
Y2 7B L¢P EPYTBY S TS
2499999%9499434499 9
* Task: Given an image, classify it as [0,1,...,9]
12

10/29/2025

MNIST Digit Recognition: The Design

) O O Output layer units
* Assume we will use a 3-layer network: O o
input, hidden, and output o O
* Input will be 28x28=784 units O O -
* 10 outputs, one for each digit. Say the O 8 3
network is shown a 6, we would then O s
expect the output of 6 to be high e v O
(closer to 1.0) compared to others. O ©) O
* How many hidden units??? O
O O
7 O O 13
MNIST Digit Recognition: The Design
i O O Output | t
* Assume we will use a 3-layer network: B
input, hidden, and output 8 :
« Input will be 28x28=784 units 5 O S5
* 10 outputs, one for each digit. Say the O
network is shown a 6, we would then O O
expect the output of 6 to be high e O
(closer to 1.0) compared to others. o O s
* How many hidden units??? 8 ’
3 9
) O O 14

10/29/2025

MNIST Digit Recognition: The Design

) O O Output layer units
* A 3-layer network: input, hidden, and O
output layers o
- Input will be 28x28=784 units o/ W PR
* 10 outputs, one for each digit. 512 O
units in hidden layer. O O s
« All units will have a Sigmoid activation =" s O 5
function. O 9
* How to determine error/loss at 5 \
output? (use our formulation?) S
* What should be the value of §?
0O O
15
MNIST Digit Recognition: The Design
) O O Output layer units
* A 3-layer network: input, hidden, and O e
output layers o
- Input will be 28x28=784 units o WS
* 10 outputs, one for each digit. 512 units O
in hidden layer. O O
* All units will have a Sigmoid activation 238738 ani] odden Loy O =
function. O o12 it O e
* How to determine error/loss at output? o
(use our formulation?) O
* What should be the value of ? o o
* How many parameters are there? o
- O
16

10/29/2025

MNIST Digit Recognition: The Design

* A 3-layer network: input, hidden, and output
layers

Input will be 28x28=784 units

* 10 outputs, one for each digit. 512 units in
hidden layer.

All units will have a Sigmoid activation function. e

28x28=784 units|

* How to determine error/loss at output? (use
our formulation?)

What should be the value of 8?

* How many parameters are there?
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

O

O

O

O

Hidden Layer
512 units

o
k-l
<

OO0O0OOOO0O0OO -

17

17

MNIST Digit Recognition: The De

* A 3-layer network: input, hidden, and output
layers

* Input will be 28x28=784 units

* 10 outputs, one for each digit. 512 units in
hidden layer.

* All units will have a Sigmoid activation function.

* How to determine error/loss at output? (use our ~ wieer
formulation?)

* What should be the value of §?

* How many parameters are there?
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

* What are the hyperparameters?

sign

O

O

O

O

O

Hidden Layer
How man

O
O

y?

Output layer units

O00O0OOO0O0OO

18

18

10/29/2025

MNIST Digit Recognition: The Design

Output layer units

* A 3-leayer network: input, hidden, and output layers

* Input will be 28x28=784 units

* 10 outputs, one for each digit. 512 units in hidden O
layer. (Why??) O

* All units will have a Sigmoid activation function.

* How to determine error/loss at output? (use our O
formulation?) oot Layer

* What should be the value of §? 28x28=784 units Hidden Layer

How many?

* How many parameters are there? O
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050 O

* What are the hyperparameters?
Layers, # Units in each layer, Activation Function, f3,
epochs, Minimum acceptable error, etc. O

0000000000

O O

19

19

Backpropagation: Gradient Descent

* Learning in a neural network using
Backpropagation is essentially a Error
Gradient Descent process.

“error bowl”

* Each change in the weights is an
attempt to reduce error and
descend into the lowest possible
position in the “error bowl” (as
shown in a 2-D weight vector case)

Weight, y

Weight, x

* In higher dimensional weight vectors 2

(typical ML situations), the error
surface can be quite complex.

From: https://builtin.com/data-science/gradient-descent

20

20

10

10/29/2025

Backpropagation: Gradient Descent

* In higher dimensional weight vectors
(typical ML situations), the error Error
surface can be quite complex.

“error bow!”

Weight, y
Weight, x
s

From: https://poissonisfish.com/2023/04/11/gradient-descent/ From: https://builtin.com/data-science/gradient-descent

21

21

Backpropagation: Learning rate

* Learning Rate, f (0< 1)

Small learning rate Large learning rate

* The value of B determines how fast -
or slow the gradient descent takes \

place. \

* Typically, one starts with a higher \\
value (say 0.5 or 0.6) and then
decrease it as the learning/epochs
progresses. This is called a Learning
Rate Schedule.

From: https://www.ibm.com/topics/gradient-descent

22

22

11

10/29/2025

MNIST Digit Recognition: More Decisions

Output layer units

* In what order do we present the patterns? As they
are in the training set? Or, randomly?

* Do we do a backpropagation pass after every input? O
Choices: O

Do a backpropagation pass after every input.

O

Do the backward pass after all the inputs have been Input Layer _ 5
seen, and errors recorded. 28x28=784 units Hidden Layer

512 units 6
Do a small batch of data and the do a backward pass. O

* Is there a better way to assess error/loss?
* Are there any other weight update mechanisms?

0000000000

Most of the period from 1986 until now has been
spent on studying these questions.

23

Decisions/Choices...

Epochs
Forward Pass
Full Batch SGD
Gradient Descent
* In what order do we present the patterns? As they are in Hyperparameters
the training set? Or, randomly? Labelled Dataset
Learning Rule
Loss Function
Mini Batch SGD

Choices: Model
Optimizer

Do a backpropagation pass after every input. :gr;meters

Do the backward pass after all the inputs have been seen, \True SGD J

and errors recorded.

Do a small batch of data and then do a backward pass.
(each batch is a power of 2)

* Is there a better way to assess error/loss?

* Are there any other weight update mechanisms?
(also manage Learning rate schedules)

Most of the period from 1986 until now has been spent on
studying these questions.

24

12

10/29/2025

Advances in NN

* Better hardware
LaptoPs became 5000 times faster between 1990 and 2010
Use of GPUs for faster processing (NVIDIA, AMD). Took off in 2011
Google’s Tensor Processing Units (TPUs), 2016

* Wide availability of datasets and benchmarks
MNIST, ImageNet, etc.

* Better Algorithms
Better activation functions
Better weight initialization schemes
Better optimization schemes (RMSprop, Adam)

* Widely available toolsets for creating and training NNs
Theano, TensorFlow, Scikit Learn, PyTorch, Keras

25

25

* Optimizer (Learning Rule)

Backpropagation Network (Updated)

* Net Input Bias Inputs

* Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc. .
N inputs

* Loss Functions

Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL
Divergence, Mean Squared Error, Mean Absolute Error, Cosine
Similarity, etc.

. Output Layer
Input Layer Hidden Layer
SGD, RMSprop, Adam, Adadelta, Adamax, Namad, etc.

26

26

13

10/29/2025

Popular Activation Functions

1.0 0.75
05 0.50
0.0 * > = 0.25
B R S Y ST 05 0 15 0.005- = = = o > 3
Relu — Rectified Linear Unit: f(I) = max(0,]) Sigmoid: f(I) = T
27
27
Softmax Activation Function
* Transforms a vector of arbitrary
i ili Output Soft
n!"lm.bers. Into a pFObablllty Iauyzl: activat?onn}gﬁction Frobabilifies
distribution. -
1.3 0.02
. 5.1 zi 0.90
Each value is in [0.0..1.0] - \ € o 0.05
Summ of all values is 1.0 0.7 N €7 0.01
J
1.1] 0.02
Useful for multi-class
classification problems. E.g.,
Recognizing handwritten digits
(ten possible outcomes [0, ..9])
28
28

14

10/29/2025

Vocabulary

* In what order do we present the patterns? As they are in
the training set? Or, randoml(}/?
If patterns are chosen at random (without replacement),
we call it Stochastic Gradient Descent (SGD)

Choices:
Do a backpropagation pass after every input. True SGD

Do the backward pass after all the inputs have been seen,
and errors recorded. Full batch SGD

Do a small batch of data and then do a backward pass. Mini
Batch SGD (each batch is a power of 2)

* Isthere a better way to assess error/loss? Loss Functions

* Are there any other weight update mechanisms?
Optimizers (also manage Learning rate schedules)

Most of the period from 1986 until now has been spent on
studying these questions.

Adam
Backpropagation
Bias

Binary Cross Entropy
Categorical Cross Entropy
Epochs

Exponential

Forward Pass

Full Batch SGD
Gradient Descent
Hyperparameters
Labelled Dataset
Learning Rule

Loss Function

Mean Absolute Error
Mean Squared Error
Mini Batch SGD
Model

Optimizer
Parameters

Relu

RMSProp

SGD

Sigmoid

Softmax

Tanh

\ True SGD /

29

29
The Learning Paradigm
Test Dataset Actual Data
i Finished
Learning/Training Trained
Algorithm Model Model
Outputs Outputs
Accuracy
Model Design Labelled
Training Dataset
30
30

15

10/29/2025

How NN Learning Works

Input X
= Layer

(data transformation)
= Layer

(data transformation)

Weight
update

Predictions True targets
Y' Y

Loss score

From: Chollet, 2021.
31

31
Introducing Keras
* Deep Learning API for Python (2016-17)
* Built on top of TensorFlow (2015) TS
* Can run on a typical CPU, or can be accelerated with specialized
hardware, if available. GPUs (Graphics Processing Units), TPUs (Tensor
Processing Units)
* Makes Neural Network design, implementation, and exploration akin
to building with LEGOs!
32

16

10/29/2025

Typical Keras Workflow

* Acquire, prepare, and load the dataset
Keras has several predefined datasets available: MNIST Digits, CIFAR10, CIFAR100, IMDB Reviews for
sentiment classification, Reuters Newswire classification, Fashion MNIST, Boston Housing price
regression (see https://keras.io/api/datasets/)

* Design and Build the Model

How many layers to use? How many units in each later? What activation function to use? (see
https://keras.io/api/layers/activations/)

* Compile the Model
Decide which optimizer to use, loss function, accuracy metric
https://keras.io/api/optimizers/, https://keras.io/api/losses/, https://keras.io/api/metrics/

* Train/Fit the Model

Provide the training data and its labels, number of epochs to train, batch size

* Test/Validate the Model

Use the test data to test how well the trained model performs

33

Over to Colab...

* See Lab for Recognizing Handwritten Digits

34

34

17

https://keras.io/api/datasets/
https://keras.io/api/layers/activations/
https://keras.io/api/optimizers/
https://keras.io/api/losses/
https://keras.io/api/metrics/
https://colab.research.google.com/drive/1fmKbmOnDpS4D_WMYEj1XjRjPt6fJ5GWz?usp=sharing

10/29/2025

References

* M. Caudill and C. Butler: Understanding Neural Networks, Volume 1,
MIT Press, 1993.

* F. Chollet: Deep Learning with Python, Second Edition, Manning2021.

* A Geron: Hands-on Machine Learning with SciKit-Learn, Keras and
TensorFlow, Oreilly, 2019.

* M. Mitchell: Artificial Intelligence: A Guide For Thinking Humans,
Farrar, Strouss, Giroux, 2019.

* Rumelhart, McClelland, and the PDP Research Group: Parallel
Distributed Processing, Volumes 1 & 2. MIT Press, 1986.

35

18

	Slide 1: CMSC 373 Artificial Intelligence Fall 2025 13-Backpropagation
	Slide 2: The Perceptron (1958)
	Slide 3: Learning in Neural Networks (so far)
	Slide 4: Introducing Bias
	Slide 5: Multi-Layer Perceptron Network
	Slide 6: Backpropagation Network (Classic Version)
	Slide 7: Backpropagation Network (Classic Version)
	Slide 8: Backpropagation Network (Classic Version)
	Slide 9: Backpropagation Network (Classic Version)
	Slide 10: Backpropagation Network (Classic Version)
	Slide 11: Backpropagation (Classic) Training Algorithm
	Slide 12: Example: Recognizing Handwritten Digits
	Slide 13: MNIST Digit Recognition: The Design
	Slide 14: MNIST Digit Recognition: The Design
	Slide 15: MNIST Digit Recognition: The Design
	Slide 16: MNIST Digit Recognition: The Design
	Slide 17: MNIST Digit Recognition: The Design
	Slide 18: MNIST Digit Recognition: The Design
	Slide 19: MNIST Digit Recognition: The Design
	Slide 20: Backpropagation: Gradient Descent
	Slide 21: Backpropagation: Gradient Descent
	Slide 22: Backpropagation: Learning rate
	Slide 23: MNIST Digit Recognition: More Decisions
	Slide 24: Decisions/Choices...
	Slide 25: Advances in NN
	Slide 26: Backpropagation Network (Updated)
	Slide 27: Popular Activation Functions
	Slide 28: Softmax Activation Function
	Slide 29: Vocabulary
	Slide 30: The Learning Paradigm
	Slide 31: How NN Learning Works
	Slide 32: Introducing Keras
	Slide 33: Typical Keras Workflow
	Slide 34: Over to Colab…
	Slide 35: References

