
9/15/2025

1

CMSC 373 Artificial Intelligence
Fall 2025

04-Problem Solving & Search
Deepak Kumar

Bryn Mawr College

Search in AI

• Search in AI is a problem solving technique.
Not the same as a web search (ala Google)

• Given a problem, find a way (path) to get from an initial state to a goal
state.

Image: https://personal.math.ubc.ca/~cass/courses/m308-02b/projects/grant/fifteen.html

Image: https://medium.com/swlh/solving-mazes-with-depth-first-search-e315771317ae

2

1

2

9/15/2025

2

Search Formulation

• State: A data structure that represents a situation

• Initial State

• Goal State

• Search Algorithm
Finds a way to get from initial state to goal state by systematically
searching through the state space.

3

State Space: All possible states of the problem

Image: https://www.aiai.ed.ac.uk/~gwickler/missionaries.html 4

3

4

9/15/2025

3

State Space: 15-Puzzle

• Aka Search Tree

16! = 2x1013 different states
 = 20,000,000,000,000!!

5

State Space: US States

Does not include Alaska & Hawaii
Has 49 vertices
107 edges

6

5

6

9/15/2025

4

State Space: Towers of Hanoi

• Search Algorithm: Searches through the search space systematically
to find a path to the goal.

Image: https://www.researchgate.net/publication/2453845_Abstracting_the_Tower_of_Hanoi/figures?lo=1
7

Search Algorithms

• Blind Search
Brute force algorithms that can find a path to the goal if one exists.
But no guarantee that it is optimal.
Examples: Depth-first search, breadth-first search.

• Informed Search
Guarantees that the path to goal is optimal.
Examples: Uniform-Cost Search, Greedy Best-first, A*, etc.

8

7

8

9/15/2025

5

A Generic Blind Search Algorithm

• Uses a data structure, called frontier (a stack or a queue), to keep track of partially explored paths from initial state. Also uses a
data structure (a set), explored to keep track of states/nodes already explored.

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

9

Initial State: CA
Goal State: PA
Partial Path: CA-OR-ID-MT
Neighbors of MT: ID, ND, SD, WY

A Generic Blind Search Algorithm

• Uses a data structure, called frontier (a stack or a queue), to keep track of partially explored paths from initial state. Also uses a
data structure, explored to keep track of states/nodes already explored.

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Depth-first Search: frontier is a stack
Breadth-first Search: frontier is a queue

10

9

10

9/15/2025

6

Trace on board

• Breadth-first Search (frontier is a queue)

• Depth-first Search (frontier is a stack)

11

A Toy Example

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

1 6

2

4

3

5

start goal

12

11

12

9/15/2025

7

A Toy Example

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

1 6

2

4

3

5

start goal

if n = goal
 return q as answer

13

Search Trees
1 6

2

4

3

5

start goal

1

5

4

32

4 5

6 65

1

2 3

4 5

46

Breadth-first Search Depth-first Search

14

13

14

9/15/2025

8

The Complexity of Search

• How long will it take for a blind search to find a path to goal if one
exists?

Two concepts:

Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d
d is the depth at which the goal exists

1 6

2

4

3

5

start goal

15

The Complexity of Search

• How long will it take for a blind search to find a path to goal if one
exists?

Two concepts:

Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d
d is the depth at which the goal was found

1 6

2

4

3

5

start goal

b=3

b=2

b=4

b=2

b=2

Average branching factor = 14/6 = 2.3

16

b=1

15

16

9/15/2025

9

The Complexity of Search

• How long will it take for a blind search to find a path to goal if one
exists?

Two concepts:

Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d
d is the depth at which the goal was found

Depth = 3 Depth = 3
17

In general, worst case
d=0, 1

d=1, 𝑏1

d=2, 𝑏2

d=d, 𝑏𝑑

Goal

b

𝑏2

𝑏𝑑

Worst case the algorithm will search 𝑏𝑑 states/nodes. i.e. O(𝑏𝑑)

18

17

18

9/15/2025

10

M&C Puzzle

Image: https://www.aiai.ed.ac.uk/~gwickler/missionaries.html

Average branching factor is ~1.4

For a solution length of 11,
a search algorithm will explore 1.411 states

1.411 = ~41

“Piece of cake!”

19

15-Puzzle

• Average Branching Factor is ~3

• Average number of moves to a solution is ~50

• That is a search algorithm will need to
explore 350 states

350 = 717,897,987,691,852,588,770,249

or ~7.1789799 x 1023

20

19

20

9/15/2025

11

15-Puzzle

• Average Branching Factor is ~3

• Average number of moves to a solution is ~50

• That is a search algorithm will need to
explore 350 states

350 = 717,897,987,691,852,588,770,249

or ~7.1789799 x 1023

Image: https://www.freecodecamp.org/news/combinatorics-handle-with-care-ed808b48e5dd/ 21

Combinatorial Explosion/Complexity Barrier

• If search is a ubiquitous requirement in AI problems.
How do we confront the complexity??

• One solution: use bigger, faster computers

• Another solution: Find better search algorithms

• Towards informed search algorithms

22

21

22

9/15/2025

12

Informed Search Algorithms

• Try to use additional information available in the problem specs
More efficient than blind searches

• Provide an optimal solution (if one exists)

• Examples of information:

Solutions/Actions may have an associated cost:
 a measure of distance, number of moves, amount of time, $cost,…

May make use of heuristic measures
 estimate of remaining distance/cost/time (but not exact!)

23

Information

• Numbers on edges denote costs
Could be time in min/hours
Could be distance
etc.

• What is optimal path from s to g?

24

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

23

24

9/15/2025

13

Information

• Numbers on edges denote costs
Could be time in min/hours
Could be distance
etc.

• What is optimal path from s to g?

• Define path cost function, g(n) as cost of path from start node to node, n
Example:
Cost of path g(s-b-c) = 13

Cost of optimal path is 17

25

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

Best-First Search
aka Uniform Cost Search
Explores the most promising partial path based on g(n)

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier with the smallest g(n)

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Trace on board…

26

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

25

26

9/15/2025

14

More Information - Heuristics

• Numbers on edges denote costs
Could be time in min/hours
Could be distance
etc.

• Define cost function, h(n) as cost of path from a node to goal
Example:
Cost of path h(b) = 11

h is a heuristic. An informal (but useful) estimate.

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

Greedy Best-First Search

Explores the most promising partial path based on h(i)

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier with the smallest h(i), i is the last node in partial path

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Trace on board…

28

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

27

28

9/15/2025

15

A*Search

Explores the most promising partial path based on total cost f(i) = g(i) + h(i)

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier with the smallest f(i), i is the last node in partial path

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Trace on board…

29

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

More about A* And Heuristics

• A* is guaranteed to find the optimal path, if one exists
i.e. A* is complete.

• The heuristic has to be admissible to guarantee optimal path.
i.e. it has to be an underestimate of the actual cost.

30

29

30

9/15/2025

16

More about A* And Heuristics

• A* is guaranteed to find the optimal path, if one exists
i.e. A* is complete.

• The heuristic must be admissible to guarantee optimal path.
i.e. it has to be an underestimate of the actual cost.

31

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

Applications of A*

• Robotics
Path planning

• Problem Solving
Puzzles

• GPS Navigation

• And many many more!

32

31

32

9/15/2025

17

Key Ideas

• Problem Solving as search

• Combating combinatorial explosion

• Using heuristics

• Many applications

33

Vocabulary

Problem Solving as Search
State
Initial State
Goal State
Search Algorithms
State Space
Search Trees
Branching Factor
Search Depth
Search Complexity
Combinatorial Explosion
Complexity Barrier

34

Search Algorithms
 Blind Search
 DFS
 BFS
 Informed Search
 Uniform-Cost
 (Best-First)
 Greedy Best-First
 A*
Cost Function (g)
Heuristic Function (h)
Total Cost Function(f)

33

34

9/15/2025

18

References

• M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books,
2020.

• Nils Nilsson, Artificial Intelligence: A New Synthesis, Morgan
Kauffman, 1998.

35

35

	Slide 1: CMSC 373 Artificial Intelligence Fall 2025 04-Problem Solving & Search
	Slide 2: Search in AI
	Slide 3: Search Formulation
	Slide 4: State Space: All possible states of the problem
	Slide 5: State Space: 15-Puzzle
	Slide 6: State Space: US States
	Slide 7: State Space: Towers of Hanoi
	Slide 8: Search Algorithms
	Slide 9: A Generic Blind Search Algorithm
	Slide 10: A Generic Blind Search Algorithm
	Slide 11: Trace on board
	Slide 12: A Toy Example
	Slide 13: A Toy Example
	Slide 14: Search Trees
	Slide 15: The Complexity of Search
	Slide 16: The Complexity of Search
	Slide 17: The Complexity of Search
	Slide 18: In general, worst case
	Slide 19: M&C Puzzle
	Slide 20: 15-Puzzle
	Slide 21: 15-Puzzle
	Slide 22: Combinatorial Explosion/Complexity Barrier
	Slide 23: Informed Search Algorithms
	Slide 24: Information
	Slide 25: Information
	Slide 26: Best-First Search aka Uniform Cost Search
	Slide 27: More Information - Heuristics
	Slide 28: Greedy Best-First Search
	Slide 29: A*Search
	Slide 30: More about A* And Heuristics
	Slide 31: More about A* And Heuristics
	Slide 32: Applications of A*
	Slide 33: Key Ideas
	Slide 34: Vocabulary
	Slide 35: References

