
CMSC 373 Artificial Intelligence

The Robot's North

Deepak Kumar

Fall 2025

Early Integrated AI Systems
SHRDLU & SHAKEY

1

The Thinking Machine Synopsis

- Represented state-of-the-art in AI in 1961
- What makes up our thought processes?
 Studies of problem solving and game playing
- Does the nervous system work like a computer?
 No. There are some similarities but many differences.
 Dangerous to carry the analogy too far.
- Innateness versus Learning by experience Goose, frog, and milk experiments, click studies, perception (window)
- Intelligent behavior is rule-obeying behavior
 Figure out the rules and write them in programs
 Story generation example
- · Brain has 10 billion neurons
- Predictions

Can't imagine a computer being creative
Computers will do things humans cannot do, or do them better
Lead to a second industrial revolution
There will be special purpose AI systems within 10-15 years
We need to build general purpose machines with senses, reasoning with logic, learning, etc.

Early Al Methodology, 1960s...

- AGI, or general AI, is too ambitious a goal.
- Use a divide and conquer approach:

Focus on component capabilities/aspects of intelligence

Build theories and systems that demonstrate these capabilities

Later, integrate them into a complete system

3

3

Identifying components of intelligent behavior

Perception

Vision, hearing, touch, smell, taste, etc. Using artificial sensors (cameras, microphones, etc.)

Problem Solving

Achieving a goal. For example, solving puzzles (Missionaries & Cannibals, Towers of Hanoi, 15-puzzle), playing games (checkers, chess, go, etc.)

Planning

Purposeful problem solving. For example, how to build a tower of blocks.

Reasoning

Representing and reasoning about knowledge about the world. For example, All red colored blocks are made of wood. Block A is colored red. Is Block A made of wood?

Natural Language Understanding

Conversing in natural language(s).

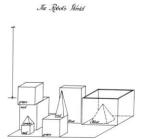
Machine Learning

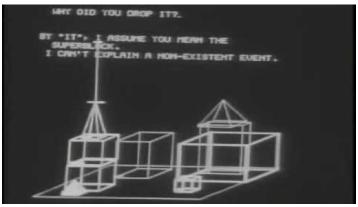
Learning as carried out by humans as well as using data to make predictions.

• Etc.

SHRDLU: An Integrated AI System

- Developed by Terry Winograd at MIT (1971)
- Demonstrated language interaction and problem solving in a small (toy) blocks world (microworld).




Image: From Winograd, 1971

5

5

SHRDLU (A Simulated Microworld) Ne Rebots Mond colored blocks, pyramids, and boxes

SHRDLU: Original Video

From: YouTube https://youtu.be/bo4RvYJYOzI

7

7

SHRDLU: Sample Interaction

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)
Person: GRASP THE PYRAMID.

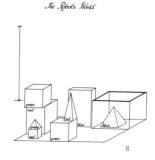
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX. Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK. Person: WHAT IS THE PYRAMID SUPPORTED BY?


Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

...

From: https://hci.stanford.edu/~winograd/shrdlu/

SHRDLU: Sample Interaction

Person: PICK UP A BIG RED BLOCK.

Computer: OK. (does it)

Person: GRASP THE PYRAMID.

Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT INTO THE BOX. Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM HOLDING.

Computer: OK. (does it)

Person: WHAT DOES THE BOX CONTAIN?

Computer: THE BLUE PYRAMID AND THE BLUE BLOCK.

Person: WHAT IS THE PYRAMID SUPPORTED BY?

Computer: THE BOX.

Person: HOW MANY BLOCKS ARE NOT IN THE BOX?

Computer: FOUR OF THEM.

From: https://hci.stanford.edu/~winograd/shrdlu/

it can answer questions about.

The Robot's World

Reflects, plans, and disambiguates.

9

SHRDLU Design

· Natural Language Interaction

Used Systemic Grammar (syntax+semantics together)

The Robert's Stokes

Planner - three basic actions

MOVETO <location> GRASP <block> UNGRASP <block>

Representations: a red block in a box

(THGOAL (#IS ?X #BLOCK)) (THEGOAL (#COLOR \$?X #RED)) (THGOAL (#IN \$?X :BOX))

Procedural Semantics

CLEARTOP X

1. Start
2. Does X support an object Y? If not, go to 5.
3. Move Y from top of X. Go to 2.
4. Assert that X is CLEARTOP

DICTIONARY PROGRAMMAR Figure 2 -- Organization of the Programs Image: From Winograd, 1971

Has a model of the world

System was written in LISP, MicroPlanner running on DEC PDP-10

200 word vocabulary

10

SHRDLU Re-implemented in Java

- Download the graphical 3-D version of SHRDLU written in JAVA from: https://hci.stanford.edu/~winograd/shrdlu/
- Interact using sentences provided in the webpage. Do some of your own.

NO LONGER AVAILABLE...

11

11

SHRDLU: Achievements (not w/o controversies)

- A **complete AI system** with several capabilities (language, question/answering, planning, acting, etc.)
- Operated in a simulated domain (microworld). Also closed.
- Limited capabilities (but better than ELIZA!)

Limited vocabulary (200 words)
Only understood sentences about the blocksworld

- Argued for the development of complete systems with limited capabilities that could be expanded later.
- Considered tremendously successful and led to excessive optimism (unfounded?)

Dichotomies of AI: Procedural vs Declarative

Procedural knowledge

aka imperative knowledge knowing-how to do something

Declarative knowledge

aka descriptive knowledge knowledge about the facts knowing-that

CLEARTOP X

- 1. Start
- 2. Does X support an object Y? If not, go to 5.
- 3. Move Y from top of X. Go to 2.
- 4. Assert that X is CLEARTOP
- 5. Done

(IS A BLOCK) (COLOR A RED) (IS B BOX) (IN A B) (CLEARTOP A) (ON A c)

13

13

SHAKEY the robot (1966-1972)

SHAKEY the robot

- Developed at SRI (Stanford Research Institute)
- Integrated AI robot
- "lived" in an area with "rooms" with doorways.
- Rooms contained blocks
- Tasks were to move blocks around in different rooms
- Tasks were given using user interaction

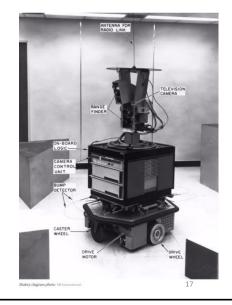
15

Image Source: https://newatlas.com/shakey-robot-sri-fiftieth-anniversary/37668/

15

SHAKEY Demo (~5 min)

From: SRI's YouTube Channel: https://youtu.be/7bsEN8mwUB8


SHAKEY Capabilities

Sensors

TV camera
Laser/sonar range finders
Bump detectors (cat's whiskers)
Radio Link to host computer
Drive motors and wheels

Abilities

Constructed plans to achieve tasks Image analysis Computer vision Path planning

17

SHAKEY Capabilities

Sensors

TV camera
Laser/sonar range finders
Bump detectors (cat's whiskers)
Radio Link to host computer
Drive motors and wheels

Abilities

Constructed plans to achieve tasks (STRIPS Planner)
Image analysis (Hough Transform for image analysis)
Computer vision (used Visibility Graphs)
Path planning (A* search algorithm)
Navigation (using dead reckoning)

For a longer (~24 min) video, see: https://www.youtube.com/watch?v=GmU7SimFkpU

18

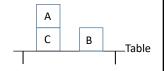
STRIPS Planner

- STRIPS (<u>Stanford Research Institute Problem Solver</u>)
- Explicit representation of current state
- Reasoned about actions to create plans to achieve goals
- Used a planning algorithm to formulate plans Essentially a search algorithm

19

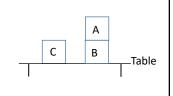
19

STRIPS Planner


B A C Table

• State – represented as a set of facts

{On(B, A), Clear(Table), On(A, C), On(C, Table), Clear(B)}


Goal

G1: On(B, Table) G2: On(B, Table) ∧ On(A, B)

Actions – represented as operators (STRIPS Operators)

action(<parameters>): description
 pre-conditions list
 delete list
 add list

20

STRIPS: Action Schema

action(<parameters>): description
 pre-conditions list
 delete list
 add list

action(<parameters>): description

pre-conditions: <facts that need to be true>

delete: <facts that will no longer be true after action is performed>

add: <Facts that will become true after action is performed>

21

21

STRIPS: Action Schema

action(<parameters>): description

pre-conditions: <facts that need to be true>

delete: <facts that will no longer be true after action is performed>

add: <Facts that will become true after action is performed>

• Example:

move(x, y, z): move x from y to z

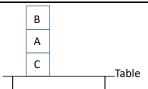
preconditions: [On(x, y), Clear(x), Clear(z)]

delete: [Clear(z), On(x, y)]

add: [On(x, z), Clear(y), Clear(Table)]

STRIPS Assumption

action(<parameters>): description
 pre-conditions list
 delete list
 add list


Besides what is specified about the way facts are added or removed, nothing else changes.

This was the STRIPS solution to the **Frame Problem** (the problem of having to explicitly specify everything that does not change when any action is carried out).

23

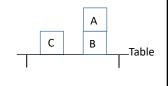
23

STRIPS: Planning as Search

Initial State

{On(B, A), Clear(Table), On(A, C), On(C, Table), Clear(B)}

Goal

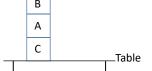

G1: On(B, Table) G2: On(B, Table) ∧ On(A, B) C B Table

Actions

move(x, y, z): move x from y to z

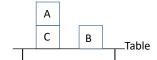
preconditions: On(x, y) \land Clear(x) \land Clear(z) **delete:** Clear(z), On(x, y)

add: On(x, z), Clear(y)



24

STRIPS: Example 1


Initial State

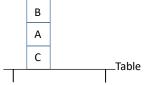
{On(B, A), Clear(Table), On(A, C), On(C, Table), Clear(B)}

Goal

On(B, Table)

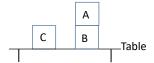
• Plan

[move(B, A, Table)]


25

25

STRIPS: Example 2


Initial State

{On(B, A), Clear(Table), On(A, C), On(C, Table), Clear(B)}

Goal

On(B, Table) \land On(A, B)

• Plan

[move(B, A, Table), move(A, C, B)]

Try this: Class Exercise

Actions: Pickup(<Block>), Putdown(<Block>, <location>)

2-

27

SHRDLU: Looking back

- Showed natural language interaction with understanding (as opposed to ELIZA) in an integrated AI system.
- Though, the dialogs were very constrained in a microworld with a limited vocabulary.
- Gave hope that the techniques used in SHRDLU might provide a route to much more general natural language understanding systems.
- Argued for the use of **procedural knowledge** in its planning/problem solving component. Many people opposed this idea.
- Highly influential and remains one of the landmark AI systems.

SHAKEY: Looking back

- Showed how one could combine perception (vision), planning, navigation and path planning in an embodied robot.
- · First robot to reason about its actions
- Led to fundamental advances in visual analysis (Hough Transform, Visibility Graphs), route finding (A*
 algorithm), and planning of complex actions (STRIPS)
- Building robots is expensive, time-consuming, difficult, daunting, and challenging. Designers had to greatly simplify the challenges faced by the robot. E.g. Power to onboard TV cameras, specially constructed environment, very slow computers.
- "Shakey also helped open the possibilities of computer science to the public's imagination and put SRI's
 Artificial Intelligence Center on the map." -: Ray Perrault, PhD, director of SRI International's Artificial
 Intelligence Center (2015)
- Funding for the project was from US Department of Defense.

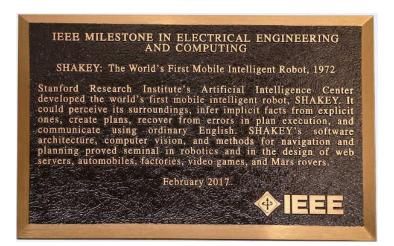
29

29

SHAKEY Funding

- ARPA (Advanced Research Projects Agency)
 US Department of Defense
 Also, National Science Foundation (NSF)
 and Office of Naval research (ONR)
- Deceptive Project Title: Automaton for Reconnaissance
 Funding was to find way for robots and AI to do military
 reconnaissance (a robot scout)

SHAKEY in the news (Hype!)



LIFE Magazine, November 1970

31

31

SHAKEY Commemorated (2017)

See: IEEE Spectrum Magazine, February 2017 Link: https://spectrum.ieee.org/sri-shakey-robot-honored-as-ieee-milestone

32

Implications and Current Status

33

33

Amazon.com Warehouse Robots

https://www.youtube.com/watch?v=4sEVX4mPuto

34

Amazon.com Warehouse Robots

See new video (From May 2025):https://youtu.be/2X4CU3jmw-g?si=2f_4cDBwcu7BpV03

35

35

Vocabulary Review

Perception **Problem Solving Planning** Reasoning Natural Language Understanding Machine Learning **SHRDLU** Microworld Procedural Knowledge Declarative Knowledge **SHAKEY STRIPS** State Goal Actions/Operators/Schema Closed World

Frame Problem

References

- The Thinking Machine (video). MIT/Carousel Films, 1961. Available at: https://youtu.be/5YBIrc-6G-0
- M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books, 2020.
- T. Winograd: Procedures as a Representation for Data in a Computer Program for Understanding Natural Language. PhD Thesis, MIT AI Technical Report 235. 1971.
- T. S. Perry. SRI's Pioneering Mobile Robot Shakey Honored as IEEE Milestone, IEEE Spectrum, February 1970. Link: https://spectrum.ieee.org/sri-shakey-robot-honored-as-ieee-milestone
- A* Search. Brilliant Worldwide Inc. Link: https://brilliant.org/wiki/a-star-search/

37