CMSC 373 Artificial Intelligence Fall 2023 17-ConvolutionNetworks

Deepak Kumar Bryn Mawr College

Deep Learning Revolution

- **Deep Learning** refers to deep neural networks (i.e. many hidden layers)
- The "deep" in Deep learning is NOT "learning that is deep" (i.e. meaningful or sophisticated learning!!)
- The "deep" ONLY refers to the "depth in layers" of the neural network.
- Convolution Networks are a kind of Deep Neural network.

- Taking inspiration from Hubel & Wiesel...
- From Cognitron, to NeoCognitron (Fukushima, 1970s) Showed how a hierarchical network (using Relu!) could learn using unsupervised means.
- To Convolutional Neural Networks (1989) used for hand-written zipcodes. Developed by Yann LeCun (at AT&T Bell Labs). In 1995, LeCun et al developed LeNet-5 to classify handwritten digits (32x32 pixel images). Used to recognize numbers on checks by banks.

4

Dense Networks versus Convolution Networks

 Layers in dense networks learn global patterns in the input

E.g. MINIST Digit recognition: we flattened 28x28 images into 784 units and fed them into the hidden layer.

• Convolution Networks learn local patterns in input

e.g. They look for patterns in small 2D windows (using *patches/filters/kernels*) of input images.

• Convolution Networks learn spatial hierarchies of patterns (e.g., edges, larger patterns, etc.)

• Convolution (using filters/patches/kernels)

Small patches of input image/map are filtered to recognize local features

• Feature Maps

Starting with an input image (e.g. 28x28x1) Using a 3x3 filter to get K output maps (26x26xK)

Max Pooling

A way of down sampling a feature map.

Over to Colab

 https://colab.research.google.com/drive/1XETuFUe9IZwBFwYjGK1IU1 mT6HkyC1-h?usp=sharing

19

ConvNet Architecture Patterns

Overfitting/Dropout

When models tend to overfit, a way to resolve overfitting is to use **dropout**. This is called a **regularization technique**.

A dropout layer can be added in between layers. Typically, a dropout layer eliminates (sets to 0) 20-50% of the outputs (dropout value can be set during model/layer specification).

• Data/Batch Normalization

Normalizing the values on inputs and outputs helps with gradient propagation and allows for deeper networks. Hence liberally used in very deep network architectures.

Data Augmentation

When datasets are small, "new" data can be created by **transforming** images in the dataset using flipping, rotation, zooming, etc. to augment the dataset with transformed images. Helps avoid overfitting and leads to better generalization.

21

ConvNets Applications

- Input Image (1)
- Image classification
- Image Segmentation (3, 4)
- Object Detection (3)

References

- F. Chollet: *Deep Learning with Python, Second Edition,* Manning2021.
- A. Geron: *Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow* 2nd Edition. O'Reilly, 2019.
- M. Mitchell: *Artificial Intelligence: A Guide For Thinking Humans,* Farrar, Strouss, Giroux, 2019.
- M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books, 2020.