CMSC 373 Artificial Intelligence Fall 2023 14-Training

Deepak Kumar Bryn Mawr College

Popular Activation Functions

Softmax

Converts a vector of values to a vector of probabilities (i.e. a probability distribution). Elements of the output vector are in range (0,1) and sum to 1. Typically used as a last layer in a classification network.

Computation(for an Output vector \vec{o} of length, *n*, with inputs *I*:

$$o_i = \frac{e^{I_i}}{\sum_{j=1}^n e^{I_j}}$$

• Enables use of a **cross-entropy loss function** (since the outputs are a probability distribution).

6

•	Acquire, prepare, and load the dataset Keras has a few predefined datasets available: MNIST Digits, CIFAR10, CIFAR100, IMDB Reviews for sentiment classification, Reuters Newswire classification, Fashion MNIST, Boston Housing price regression (see https://keras.io/ani/datasets/)
•	Design and Build the Model How many layers to use? How many units in each later? What activation function to use? (see <u>https://keras.io/api/layers/activations/</u>)
•	Compile the Model Decide which optimizer to use, loss function, accuracy metric
• •	Train/Fit the Model Provide the training data and its labels, number of epochs to train, batch size
• •	Test/Validate the Model Use the test data to test how well the trained model performs

13

Over to Colab...

• See Lab for <u>Recognizing Handwritten Digits</u>

Reflection from Colab Work We defined our network design and all the hyperparameters. We used Sigmoid for hidden layer activations and Softmax for output layer activations. We used RMSProp as our optimizer and accuracy (% correct) as our accuracy metric. We trained the model for 10 epochs using mini batch SGD. Accuracy obtained: XXX% Time for 10 epochs: XXX seconds We tested the trained model for 5 test inputs to examine the results for correctness. # Correct/5 We checked the image of one of the test digits to confirm. We performed an evaluation of the model on the test dataset. Loss: XXX Accuracy: XXX Time Taken: XXX seconds

15

References

- M. Caudill and C. Butler: Understanding Neural Networks, Volume 1, MIT Press, 1993.
- F. Chollet: Deep Learning with Python, Second Edition, Manning2021.
- A Geron: Hands-on Machine Learning with SciKit-Learn, Keras and TensorFlow, Oreilly, 2019.
- M. Mitchell: *Artificial Intelligence: A Guide For Thinking Humans,* Farrar, Strouss, Giroux, 2019.
- M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books, 2020.