
11/1/2023

1

CMSC 373 Artificial Intelligence
Fall 2023

14-Training
Deepak Kumar

Bryn Mawr College

Review

2

Adam
Backpropagation

Bias
Binary Cross Entropy

Categorical Cross Entropy
Epochs

Exponential
Forward Pass

Full Batch SGD
Gradient Descent
Hyperparameters
Labelled Dataset

Learning Rule
Loss Function

Mean Absolute Error
Mean Squared Error

Mini Batch SGD
Model

Optimizer
Parameters

Relu
RMSProp

SGD
Sigmoid
Softmax

Tanh
True SGD

1

2

11/1/2023

2

Backpropagation Network (Updated)

• Net Input

I =

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

• Loss Functions

Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL Divergence,
Mean Squared Error, Mean Absolute Error, Cosine Similarity, etc.

• Optimizer (Learning Rule)

SGD, RMSprop, AdaGrad, Adam, Adadelta, Adamax, Namad, etc.

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

3

Backpropagation: Gradient Descent

• In higher dimensional weight vectors
(typical ML situations), the error
surface can be quite complex.

4

Error

Weight, x

Weight, y

∆𝑤

𝑤old

𝑤new

“error bowl”

From: https://builtin.com/data-science/gradient-descentFrom: https://poissonisfish.com/2023/04/11/gradient-descent/

3

4

11/1/2023

3

Popular Activation Functions

5

Relu – Rectified Linear Unit: 𝑓(𝐼) = max(0, 𝐼) Sigmoid: f I =
1

1+𝑒I

Both are non-linear.
Relu is easier to compute than Sigmoid. Hence commonly used in Deep networks.
Sigmoid constrains activation, Relu doesn’t.
Networks with Relu activations tend to show better convergence over Sigmoid.
Too many zero activations in Relu networks can be a problem.

Popular Activation Functions

• Softmax

Converts a vector of values to a vector of probabilities (i.e. a probability
distribution).
Elements of the output vector are in range (0,1) and sum to 1.
Typically used as a last layer in a classification network.

Computation(for an Output vector 𝒐 of length, 𝑛, with inputs 𝐼:

𝑜𝑖 =
𝑒𝐼𝑖

σ𝑗=1
𝑛 𝑒𝐼𝑗

• Enables use of a cross-entropy loss function (since the outputs are a
probability distribution).

6

5

6

11/1/2023

4

Backpropagation Network (Updated)

• Net Input

I =

𝑖=1

𝑖=𝑛

𝑤𝑖𝑥𝑖 + ഥ𝒃

• Activation Functions

Sigmoid, Relu, Softmax, tanh, exponential, etc.

• Loss Functions

Binary Cross Entropy, Categorical Cross Entropy, Poisson, KL Divergence,
Mean Squared Error, Mean Absolute Error, Cosine Similarity, etc.

• Optimizer (Learning Rule)

SGD, RMSprop, AdaGrad, Adam, Adadelta, Adamax, Namad, etc.
See: Optimizers in Deep Learning.

N inputs

Hidden Layer

Output Layer

Input Layer

Bias Inputs

7

The Learning Paradigm

8

Learning/Training
Algorithm

Trained
Model

Model Design Labelled
Training Dataset

Test Dataset

Outputs
Accuracy

Finished
Model

Actual Data

Outputs

7

8

https://medium.com/mlearning-ai/optimizers-in-deep-learning-7bf81fed78a0

11/1/2023

5

How NN Learning Works

9
From: Chollet, 2021.

MNIST Digit Recognition: The Design

• A 3-leayer network: input, hidden, and output layers

• Input will be 28x28=784 units

• 10 outputs, one for each digit. 512 units in hidden
layer.

• Parameters
784x512 + 512 (bias) + 512x10 + 10 (Bias) = 407,050

• Hyperparameters
3 Layers
784 Units in input layer
512 units in hidden layer (Sigmoid/Relu)
10 Units in output layer (Softmax)
Loss: Mean Squared Error/Categorical Cross-Entropy
Optimizer: (SGD, RMSProp),
Learning Rate: 𝛽 (decided by the optimizer)
Accuracy Metric: Accuracy (% Correct)
epochs (? Start with a max of 10)

10

0

1

2

3

4

5

6

7

8

9

Input Layer
28x28=784 units

Hidden Layer
512 Units

Output layer units

9

10

11/1/2023

6

Commonsense Baseline Accuracy

• Before we begin, we should always estimate a baseline accuracy.

That is, given any data set, if we were to randomly assign an output,
what would be the accuracy?

For binary classification, the baseline is 50% accuracy.

For MNIST Digits classification, the baseline is 10% accuracy.

• Any neural network model we train should be able to perform far
better!

11

Introducing Keras

• Deep Learning API for Python (2016-17)

• Built on top of TensorFlow (2015)

• Can run on a typical CPU, or can be accelerated with specialized
hardware, if available. GPUs (Graphics Processing Units), TPUs (Tensor
Processing Units)

• Makes Neural Network design, implementation, and exploration akin
to building with LEGOs!

12

From: Chollet, 2021.

11

12

11/1/2023

7

Typical Keras Workflow

• Acquire, prepare, and load the dataset
Keras has a few predefined datasets available: MNIST Digits, CIFAR10, CIFAR100, IMDB Reviews for
sentiment classification, Reuters Newswire classification, Fashion MNIST, Boston Housing price
regression (see https://keras.io/api/datasets/)

• Design and Build the Model
How many layers to use? How many units in each later? What activation function to use? (see
https://keras.io/api/layers/activations/)

• Compile the Model
Decide which optimizer to use, loss function, accuracy metric

• Train/Fit the Model
Provide the training data and its labels, number of epochs to train, batch size

• Test/Validate the Model
Use the test data to test how well the trained model performs

13

Over to Colab…

• See Lab for Recognizing Handwritten Digits

14

13

14

https://keras.io/api/datasets/
https://keras.io/api/layers/activations/
https://colab.research.google.com/drive/1PYv6_a3bv9Nlw0H5Upwt_2ToFAkjDNfw#scrollTo=oBvqjGPrHDAs

11/1/2023

8

Reflection from Colab Work

• We defined our network design and all the hyperparameters.

• We used Sigmoid for hidden layer activations and Softmax for output layer activations.

• We used RMSProp as our optimizer and accuracy (% correct) as our accuracy metric.

• We trained the model for 10 epochs using mini batch SGD.
Accuracy obtained: XXX%
Time for 10 epochs: XXX seconds

• We tested the trained model for 5 test inputs to examine the results for correctness.
Correct/5

• We checked the image of one of the test digits to confirm.

• We performed an evaluation of the model on the test dataset.
Loss: XXX
Accuracy: XXX
Time Taken: XXX seconds

15

Testing & Validation

• Unlike the Perceptron, a NN training may not learn 100% of the training data correctly. You must evaluate and
decide on an acceptable accuracy level for the model.

• Keras facilitates an examination of the model during and after training.

• As you can see, The loss is decreasing, and accuracy is increasing as the epochs progress.

• Training Loss & Training Accuracy
The value of the loss function during training is Training Loss. The accuracy during training is Training Accuracy.

• Validation Loss & Validation Accuracy
The value of the loss function during testing is Validation Loss. The accuracy during testing is Validation Accuracy.

16

>>> model.fit(x, y, epochs=20, batch_size=128)
Epoch 1/20
469/469 [==============================] - 7s 4ms/step - loss: 0.3627 - accuracy: 0.8951
Epoch 2/20
469/469 [==============================] - 2s 3ms/step - loss: 0.2128 - accuracy: 0.9366
. . .
Epoch 20/20
469/469 [==============================] - 2s 3ms/step - loss: 0.0844 - accuracy: 0.9747

15

16

11/1/2023

9

Training & Validation Loss and Accuracy

17

• Notice that the validation loss and validation accuracy both diverge after ~ 4th epoch.

• The model performs better on training data doesn’t necessarily do well on the testing data.

• This is called overfitting.

Underfitting and Overfitting

18

• Initially, as the training proceeds, the lower
the loss on training data, the lower the loss
on test data. This is underfitting. The
network hasn’t yet modeled the all the
patterns in the training data.

• As training proceeds further, the testing
stops improving and starts degrading: This
is overfitting. The network is starting to
learn patterns specific to the training data.

• Overfitting can occur when the training
data is noisy, ambiguous, or involves
uncertainty.

17

18

11/1/2023

10

Over to Colab…

• Testing the MNIST Model

19

Noisy Data

20

19

20

https://colab.research.google.com/drive/1c1YFdYZjEiCneHu0XubFdlMABUd0cUoE?usp=sharing

11/1/2023

11

From a Random Model to Overfitting or
Robust Fit

21

From: Chollet, 2021

Training Data, Validation Data, Testing Data

22

Entire Dataset

Training Dataset (70%) Validation
Dataset (15%)

Testing
Dataset (15%)

• Training dataset is for use during training

• Validation dataset is to estimate loss/accuracy of the model to tune
the hyperparameters

• Testing dataset is for evaluating the model after training. (how well
does it generalize?)

21

22

11/1/2023

12

Review

23

Optimizer
Overfitting
Parameters

Relu
RMSProp

Scikit-Learn
SGD

Sigmoid
Softmax

Tanh
Testing Data

Training Accuracy
Training Data
Training Loss

True SGD
Underfitting

Validation Accuracy
Validation Data
Validation Loss

Adam
Backpropagation

Bias
Binary Cross Entropy

Categorical Cross Entropy
Commonsense Baseline Accuracy

Epochs
Exponential

Forward Pass
Full Batch SGD

Gradient Descent
Hyperparameters

Keras
Labelled Dataset

Learning Rule
Loss Function

Mean Absolute Error
Mean Squared Error

Mini Batch SGD
Model

References

• M. Caudill and C. Butler: Understanding Neural Networks, Volume 1,
MIT Press, 1993.

• F. Chollet: Deep Learning with Python, Second Edition, Manning2021.

• A Geron: Hands-on Machine Learning with SciKit-Learn, Keras and
TensorFlow, Oreilly, 2019.

• M. Mitchell: Artificial Intelligence: A Guide For Thinking Humans,
Farrar, Strouss, Giroux, 2019.

• M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books,
2020.

24

23

24

	Slide 1: CMSC 373 Artificial Intelligence Fall 2023 14-Training
	Slide 2: Review
	Slide 3: Backpropagation Network (Updated)
	Slide 4: Backpropagation: Gradient Descent
	Slide 5: Popular Activation Functions
	Slide 6: Popular Activation Functions
	Slide 7: Backpropagation Network (Updated)
	Slide 8: The Learning Paradigm
	Slide 9: How NN Learning Works
	Slide 10: MNIST Digit Recognition: The Design
	Slide 11: Commonsense Baseline Accuracy
	Slide 12: Introducing Keras
	Slide 13: Typical Keras Workflow
	Slide 14: Over to Colab…
	Slide 15: Reflection from Colab Work
	Slide 16: Testing & Validation
	Slide 17: Training & Validation Loss and Accuracy
	Slide 18: Underfitting and Overfitting
	Slide 19: Over to Colab…
	Slide 20: Noisy Data
	Slide 21: From a Random Model to Overfitting or Robust Fit
	Slide 22: Training Data, Validation Data, Testing Data
	Slide 23: Review
	Slide 24: References

