1970s

• AI unable to deliver on inflated claims

• People in AI were largely dismissive of combinatorial explosion (the Complexity Barrier)

• In, UK *The Lighthill Report* was “fiercely dismissive of mainstream AI”

• In the US, DARPA became frustrated with the failure of AI to deliver on its promises.
1970s – AI as Alchemy

• Dreyfus was critical of inflated claims and grand predictions of AI pioneers.

• John McCarthy’s response to The Lighthill report

If we take [Lighthill’s categorization] seriously, then most AI researchers lose intellectual contact with Lighthill immediately, because his three categories have no place for what is or should be our main scientific activity –

study the structure of information and the structure of problem solving processes independently of applications and independently of its realization in animals or humans.

John McCarthy’s Response, contd.

Did We Deserve It?

Lighthill had his shot at AI and missed, but this doesn’t prove that everything in AI is ok. In my opinion, present AI research suffers from some major deficiencies apart from the fact that any scientists would achieve more if they were smarter and worked harder.

While it is far beyond the scope of this review to try to summarize what has been accomplished in AI since Turing’s 1950 paper, here is a five sentence try:

Many approaches have been explored and tentatively rejected including automaton models, random search, sequence extrapolation, and many others.

Many heuristics have been developed for reducing various kinds of tree search; some of these are quite special to particular applications, but others are general.

Much progress has been made in discovering how various kinds of information can be represented in the memory of a computer, but a fully general representation is not yet available.

The problem of perception of speech and vision has been explored and recognition has been found feasible in many instances.

A beginning has been made in understanding the semantics of natural language.

These accomplishments notwithstanding, I think that artificial intelligence research has so far been only moderately successful; its rate of solid progress is perhaps greater than most social sciences and less than many physical sciences. This is perhaps to be expected considering the difficulty of the problem.
1970’s First AI Winter sets in...

The Seasons of AI

- **1950s – 1966 First AI Summer: Irrational Exuberance**
 Early successes in game playing, theorem proving, problem solving

- **1967 – 1977 First AI Winter**
 No useful deliverables led to loss of research funding and cancellation of AI programs. In UK The Lighthill Report (toy AI systems do not scale due to combinatorial explosion).

- **1978 – 1987 Second AI Summer/Spring**

- **1988 – 1993 Second AI Winter**
 Failure of AI Hardware companies (Symbolics, LMI, Lisp Machines) and AI Companies (Teknowledge, Inference Corp. etc.) Commercial deployments of Expert Systems were discontinued.

- **1993 – 2011 Third AI Summer (Mostly academic advances)**
 Statistical approaches and extensions to logic (Bayesian Nets), Non-Monotonic Reasoning (in Logic), Fuzzy Logic, advances in Machine Learning (Decision Trees, Random Forests, Neural Nets), Cognitive Models, Logic Programming, Case-Based Reasoning, Genetic Algorithms, Agent-based approaches, etc.

- **2011 – Now Third AI Spring**
 Rise of Deep Learning, Neuro-symbolic AI, ChatGPT and other chatbots, generative AI.
1980s Knowledge is Power

- Early AI focused too much on general approaches like search and problem solving.

- These were all missing a key ingredient that is a crucial part of any intelligent activity: Knowledge.

- A New Agenda for AI

 Capturing and using human knowledge was the key to progress in AI.

Al Approaches to Knowledge

- Expert Systems
- Logic
- Frames, Scripts, and Semantic Networks
- Knowledge Graphs
The Rise of Expert Systems

• Systems that used human expert knowledge to solve specific, narrowly defined problems.

• Expert Systems showed that AI could be used for commercial interest (potential to make money).

• The idea is to try and capture human knowledge acquired by an expert over a long period of time and such systems could make that expertise more widely available.

• Led to a second boom in AI in the 1980s.

Exemplar Expert Systems
MYCIN and R1/XCON

• MYCIN

Designed to be a doctor’s assistant about blood diseases in humans. Its expertise lies in the domain of bacterial infections. Helped physicians prescribe antibiotic treatment for patients without knowing exactly which organism may be the culprit.

• R1/XCON

Designed to be an expert in computer mainframe system components configuration. It advised on the configuration of I/O devices along input-output buses including selecting proper cabinets etc.
MYCIN: Example Session

> What is the patient’s name?
 John Doe.
> Male or Female?
 Male.
> Age?
 He is 55.
> Have you obtained positive cultures indicating general type?
 Yes.
> What type of infection is it?
 Bacteremia.
> When did symptoms first appear?
 May 5.
> Let's call the most recent culture C1. From what site was C1 taken?
 From the blood.
> When?
 May 9.
> Let's call the first significant organism from this culture U1. Do you know the identity of U1?
 No.
> Is U1 a rod or a coccus or something else?
 Rod.
> What is the gram stain of U1?
 Gram-negative.
> Did U1 grow aerobically?
 Yes.

> My recommendation will be based on the opinion that the identity of U1 may be
 1. Pseudomonas-aeruginosa
 2. Klebsiella-pneumoniae
 3. E. Coli
 4. Bacteroides-fragilis
 5. Enterobacter
 6. Proteus-nonmirabilis

> On a scale of 0 to 4, where higher numbers indicate greater severity, how would
 you rate the patient’s degree of sickness?
 3.
> Does the patient have a clinically significant allergic reaction to any antimicrobial
 agent?
 No.
> How much does the patient weigh?
 70 kilograms.

> My first recommendation is as follows; to cover for items 1, 2, 3, 5, and 6 give
gentamycin using a dose of 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days. Modify
dose in renal failure. Also, to cover for item 4, give clindamycin using a dose of 595
mg (8.5 mg/kg) q6h IV [or IM] for 14 days. If diarrhea or other gastrointestinal
symptoms develop, check for pseudomembranous colitis.

Rule-Based Systems - Rules

The system has a bunch of rules of the form:

Rn IF condition1
 condition2
 ...
 THEN assertion1/action1
 assertion2/action2
 ...

Example of a MYCIN rule:

M88 IF ?x’s type is primary bacteremia
 the suspected entry point of ?x is the gastrointestinal tract
 the site of the culture of ?x is one of the sterile sites
 THEN there is evidence (0.6) that ?x is bacteroides
Rule-Based Systems - Rules

The system has a bunch of rules of the form:

\[R_n \quad \text{IF} \quad \text{condition}_1 \\text{condition}_2 \ldots \quad \text{THEN} \quad \text{assertion}_1/\text{action}_1 \\text{assertion}_2/\text{action}_2 \ldots \]

Example of a MYCIN rule:

M88 IF ?x's type is primary bacteremia the suspected entry point of ?x is the gastrointestinal tract the site of the culture of ?x is one of the sterile sites THEN there is evidence (0.7) that ?x is bacteroides

Example of a R1/XCON rule:

X2 IF the context is doing layout and assigning a power supply an sbi module of any type has been put in a cabinet the position the sbi module occupies is known there is space available for a power supply there is an available power supply THEN put the power supply in the cabinet in the available space

X3 IF the current context is x THEN deactivate the x context activate the y context
Rule-Based Systems - Architecture

MYCIN had ~600 rules
MYCIN was a **backward chaining** system

R1/XCON had ~17,500 rules
R1/XCON was a **forward chaining** system

New job title: **knowledge engineer**

ZOOKEEPER – A Toy Rule-Based System

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>IF (x) has hair (\text{THEN } x) is a mammal</td>
</tr>
<tr>
<td>Z2</td>
<td>IF (x) gives milk (\text{THEN } x) is a mammal</td>
</tr>
<tr>
<td>Z3</td>
<td>IF (x) has feathers (\text{THEN } x) is a bird</td>
</tr>
<tr>
<td>Z4</td>
<td>IF (x) flies (\text{THEN } x) is a bird</td>
</tr>
<tr>
<td>Z5</td>
<td>IF (x) flies (\text{THEN } x) lays eggs (\text{THEN } x) is a bird</td>
</tr>
<tr>
<td>Z6</td>
<td>IF (x) is a mammal (\text{THEN } x) has pointed teeth (x) has claws (x) has forward-pointing eyes (\text{THEN } x) is a carnivore</td>
</tr>
<tr>
<td>Z7</td>
<td>IF (x) is a mammal (\text{THEN } x) is an ungulate</td>
</tr>
<tr>
<td>Z8</td>
<td>IF (x) is a mammal (\text{THEN } x) chews cud (x) is an ungulate</td>
</tr>
<tr>
<td>Z9</td>
<td>IF (x) is a carnivore (\text{THEN } x) has tawny color (x) has dark spots (x) is a cheetah</td>
</tr>
<tr>
<td>Z10</td>
<td>IF (x) is a carnivore (\text{THEN } x) has tawny color (x) has black stripes (x) is a tiger</td>
</tr>
<tr>
<td>Z11</td>
<td>IF (x) is an ungulate (\text{THEN } x) has long legs (x) has long neck (x) is black and white (x) has dark spots (x) is a giraffe</td>
</tr>
<tr>
<td>Z12</td>
<td>IF (x) is an ungulate (\text{THEN } x) has white color (x) has black stripes (x) is a zebra</td>
</tr>
<tr>
<td>Z13</td>
<td>IF (x) is a bird (\text{THEN } x) does not fly (x) has long legs (x) is black and white (x) is an ostrich</td>
</tr>
<tr>
<td>Z14</td>
<td>IF (x) is a bird (\text{THEN } x) does not fly (x) swims (x) is black and white (x) is a penguin</td>
</tr>
<tr>
<td>Z15</td>
<td>IF (x) is a bird (\text{THEN } x) is a good flyer (x) is an albatross</td>
</tr>
</tbody>
</table>

Stretch has hair
Stretch chews cud
Stretch has long legs
Stretch has a long neck
Stretch has tawny color
Stretch has dark spots
ZOOKEEPER – A Toy Rule-Based System

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>IF (x) has hair THEN (x) is a mammal</td>
</tr>
<tr>
<td>Z2</td>
<td>IF (x) gives milk THEN (x) is a mammal</td>
</tr>
<tr>
<td>Z3</td>
<td>IF (x) has feathers THEN (x) is a bird</td>
</tr>
<tr>
<td>Z4</td>
<td>IF (x) flies THEN (x) is a bird</td>
</tr>
<tr>
<td>Z5</td>
<td>IF (x) flies (x) lays eggs THEN (x) is a bird</td>
</tr>
<tr>
<td>Z6</td>
<td>IF (x) is a mammal (x) has pointed teeth THEN (x) is a carnivore</td>
</tr>
<tr>
<td>Z7</td>
<td>IF (x) is a mammal (x) has hoofs (x) is an ungulate</td>
</tr>
<tr>
<td>Z8</td>
<td>IF (x) is a mammal (x) chews cud (x) is an ungulate</td>
</tr>
<tr>
<td>Z9</td>
<td>IF (x) is a carnivore (x) has tawny color (x) has dark spots THEN (x) is a cheetah</td>
</tr>
</tbody>
</table>

![Rule Z10](image1.png)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z10</td>
<td>IF (x) is a carnivore (x) has tawny color (x) has black stripes THEN (x) is a tiger</td>
</tr>
<tr>
<td>Z11</td>
<td>IF (x) is an ungulate (x) has long legs (x) has long neck (x) has tawny color (x) has dark spots THEN (x) is a giraffe</td>
</tr>
<tr>
<td>Z12</td>
<td>IF (x) is an ungulate (x) has white color (x) has black stripes THEN (x) is a zebra</td>
</tr>
<tr>
<td>Z13</td>
<td>IF (x) is a bird (x) does not fly (x) has long legs (x) has black and white THEN (x) is an ostrich</td>
</tr>
<tr>
<td>Z14</td>
<td>IF (x) is a bird (x) does not fly (x) swims (x) is a penguin</td>
</tr>
<tr>
<td>Z15</td>
<td>IF (x) is a bird (x) is a good flyer THEN (x) is an albatross</td>
</tr>
</tbody>
</table>

Stretch Example

- **Rule Z1**
 - IF \(x \) has hair
 - THEN \(x \) is a mammal

- **Rule Z2**
 - IF \(x \) gives milk
 - THEN \(x \) is a mammal

- **Rule Z3**
 - IF \(x \) has feathers
 - THEN \(x \) is a bird

- **Rule Z4**
 - IF \(x \) flies
 - THEN \(x \) is a bird

- **Rule Z5**
 - IF \(x \) flies \(x \) lays eggs
 - THEN \(x \) is a bird

- **Rule Z6**
 - IF \(x \) is a mammal \(x \) has pointed teeth \(x \) has forward-pointing eyes
 - THEN \(x \) is a carnivore

- **Rule Z7**
 - IF \(x \) is a mammal \(x \) has hoofs
 - THEN \(x \) is an ungulate

- **Rule Z8**
 - IF \(x \) is a mammal \(x \) chews cud
 - THEN \(x \) is an ungulate

- **Rule Z9**
 - IF \(x \) is a carnivore \(x \) has tawny color \(x \) has dark spots
 - THEN \(x \) is a cheetah

- **Rule Z10**
 - IF \(x \) is a carnivore \(x \) has tawny color \(x \) has black stripes
 - THEN \(x \) is a tiger

- **Rule Z11**
 - IF \(x \) is an ungulate \(x \) has long legs \(x \) has long neck \(x \) has tawny color \(x \) has dark spots
 - THEN \(x \) is a giraffe

- **Rule Z12**
 - IF \(x \) is an ungulate \(x \) has white color \(x \) has black stripes
 - THEN \(x \) is a zebra

- **Rule Z13**
 - IF \(x \) is a bird \(x \) does not fly
 - THEN \(x \) has long legs \(x \) black and white
 - THEN \(x \) is an ostrich

- **Rule Z14**
 - IF \(x \) is a bird \(x \) does not fly
 - THEN \(x \) swims
 - THEN \(x \) is a penguin

- **Rule Z15**
 - IF \(x \) is a bird
 - THEN \(x \) is a good flyer
 - THEN \(x \) is an albatross

- **Stretch**
 - Has hair
 - Chews cud
 - Has long legs
 - Has a long neck
 - Has tawny color
 - Has dark spots
 - Is a mammal

- **Summary**
 - Rule is triggered.
 - Rule is fired.
 - (Note: Army terminology!)
ZOOKEEPER – A Toy Rule-Based System

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>IF (x \text{ has hair}) THEN (x \text{ is a mammal})</td>
</tr>
<tr>
<td>Z2</td>
<td>IF (x \text{ gives milk}) THEN (x \text{ is a mammal})</td>
</tr>
<tr>
<td>Z3</td>
<td>IF (x \text{ has feathers}) THEN (x \text{ is a bird})</td>
</tr>
<tr>
<td>Z4</td>
<td>IF (x \text{ flies}) THEN (x \text{ is a bird})</td>
</tr>
<tr>
<td>Z5</td>
<td>IF (x \text{ flies}) THEN (x \text{ lays eggs})</td>
</tr>
<tr>
<td>Z6</td>
<td>IF (x \text{ is a mammal}) THEN (x \text{ has pointed teeth})</td>
</tr>
<tr>
<td>Z7</td>
<td>IF (x \text{ is a mammal}) THEN (x \text{ has hoofs})</td>
</tr>
<tr>
<td>Z8</td>
<td>IF (x \text{ is a mammal}) THEN (x \text{ chews cud})</td>
</tr>
<tr>
<td>Z9</td>
<td>IF (x \text{ is a carnivore}) THEN (x \text{ has tawny color})</td>
</tr>
<tr>
<td>Z10</td>
<td>IF (x \text{ is a carnivore}) THEN (x \text{ has tawny color})</td>
</tr>
<tr>
<td>Z11</td>
<td>IF (x \text{ is an ungulate}) THEN (x \text{ has long neck})</td>
</tr>
<tr>
<td>Z12</td>
<td>IF (x \text{ is an ungulate}) THEN (x \text{ has dark spots})</td>
</tr>
<tr>
<td>Z13</td>
<td>IF (x \text{ is a bird}) THEN (x \text{ does not fly})</td>
</tr>
<tr>
<td>Z14</td>
<td>IF (x \text{ is a bird}) THEN (x \text{ chews cud})</td>
</tr>
<tr>
<td>Z15</td>
<td>IF (x \text{ is a bird}) THEN (x \text{ is a good flyer})</td>
</tr>
</tbody>
</table>

19/25/2023

19

ZOOKEEPER – A Toy Rule-Based System

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z1</td>
<td>IF (x \text{ has hair}) THEN (x \text{ is a mammal})</td>
</tr>
<tr>
<td>Z2</td>
<td>IF (x \text{ gives milk}) THEN (x \text{ is a mammal})</td>
</tr>
<tr>
<td>Z3</td>
<td>IF (x \text{ has feathers}) THEN (x \text{ is a bird})</td>
</tr>
<tr>
<td>Z4</td>
<td>IF (x \text{ flies}) THEN (x \text{ is a bird})</td>
</tr>
<tr>
<td>Z5</td>
<td>IF (x \text{ flies}) THEN (x \text{ lays eggs})</td>
</tr>
<tr>
<td>Z6</td>
<td>IF (x \text{ is a mammal}) THEN (x \text{ has pointed teeth})</td>
</tr>
<tr>
<td>Z7</td>
<td>IF (x \text{ is a mammal}) THEN (x \text{ has hoofs})</td>
</tr>
<tr>
<td>Z8</td>
<td>IF (x \text{ is a mammal}) THEN (x \text{ chews cud})</td>
</tr>
<tr>
<td>Z9</td>
<td>IF (x \text{ is a carnivore}) THEN (x \text{ has tawny color})</td>
</tr>
<tr>
<td>Z10</td>
<td>IF (x \text{ is a carnivore}) THEN (x \text{ has tawny color})</td>
</tr>
<tr>
<td>Z11</td>
<td>IF (x \text{ is an ungulate}) THEN (x \text{ has long neck})</td>
</tr>
<tr>
<td>Z12</td>
<td>IF (x \text{ is an ungulate}) THEN (x \text{ has dark spots})</td>
</tr>
<tr>
<td>Z13</td>
<td>IF (x \text{ is a bird}) THEN (x \text{ does not fly})</td>
</tr>
<tr>
<td>Z14</td>
<td>IF (x \text{ is a bird}) THEN (x \text{ chews cud})</td>
</tr>
<tr>
<td>Z15</td>
<td>IF (x \text{ is a bird}) THEN (x \text{ is a good flyer})</td>
</tr>
</tbody>
</table>

20/25/2023

20
ZOOKEEPER – A Toy Rule-Based System

Z1 IF ?x has hair THEN ?x is a mammal
Z2 IF ?x gives milk THEN ?x is a mammal
Z3 IF ?x has feathers THEN ?x is a bird
Z4 IF ?x flies THEN ?x is a bird
Z5 IF ?x flies ?x lays eggs THEN ?x is a bird
Z6 IF ?x is a mammal ?x has pointed teeth ?x has claws ?x has forward-pointing eyes ?x is a carnivore THEN ?x is a carnivore
Z7 IF ?x is a mammal ?x has hoofs ?x is an ungulate THEN ?x is an ungulate
Z8 IF ?x is a mammal ?x chews cud ?x is an ungulate THEN ?x is an ungulate
Z9 IF ?x is a carnivore ?x has tawny color ?x has dark spots ?x is a cheetah THEN ?x is a carnivore
Z10 IF ?x is carnivore ?x has tawny color ?x has black stripes ?x is a tiger THEN ?x is a tiger
Z11 IF ?x is an ungulate ?x has long legs ?x has long neck ?x has tawny color ?x has dark spots ?x is a giraffe THEN ?x is a giraffe
Z12 IF ?x is an ungulate ?x has white color ?x has black stripes ?x is a zebra THEN ?x is a zebra
Z13 IF ?x is a bird ?x does not fly ?x has long legs ?x is black and white ?x is an ostrich THEN ?x is an ostrich
Z14 IF ?x is a bird ?x does not fly ?x swims ?x is black and white ?x is a penguin THEN ?x is a penguin
Z15 IF ?x is a bird ?x is a good flyer ?x is an albatross THEN ?x is an albatross

This is a forward chaining system.

Rule-Based Systems - Architecture

Non-expert User → User Interface → Rule Engine → Rules → Knowledge from Expert
ZOOKEEPER – A Toy Rule-Based System

Z1
IF ?x has hair THEN ?x is a mammal

Z2
IF ?x gives milk THEN ?x is a mammal

Z3
IF ?x has feathers THEN ?x is a bird

Z4
IF ?x flies THEN ?x is a bird

Z5
IF ?x lays eggs THEN ?x is a bird

Z6
IF ?x is a mammal ?x has pointed teeth ?x has claws ?x has forward-pointing eyes THEN ?x is a carnivore

Z7
IF ?x is a mammal ?x has hoofs THEN ?x is an ungulate

Z8
IF ?x is a mammal ?x chews cud THEN ?x is an ungulate

Z9
IF ?x is a carnivore ?x has tawny color ?x has dark spots THEN ?x is a cheetah

Z10
IF ?x is a carnivore ?x has black stripes ?x is a tiger

Z11
IF ?x is an ungulate ?x has long legs ?x has black and white THEN ?x is an ostrich

Z12
IF ?x is a bird ?x does not fly ?x swims THEN ?x is a penguin

Z13
IF ?x is an ungulate ?x has dark spots THEN ?x is a giraffe

Z14
IF ?x is an ungulate ?x has long legs ?x is black and white THEN ?x is a giraffe

Z15
IF ?x is a bird ?x is a good flyer THEN ?x is an albatross

Is Swifty a cheetah?

Backward chaining example

Swifty has hair
Swifty has pointed teeth
Swifty has claws
Swifty has forward pointing eyes
Swifty has tawny color
Swifty has dark spots

ZOOKEEPER – A Toy Rule-Based System

Z1
IF ?x has hair THEN ?x is a mammal

Z2
IF ?x gives milk THEN ?x is a mammal

Z3
IF ?x has feathers THEN ?x is a bird

Z4
IF ?x flies THEN ?x is a bird

Z5
IF ?x lays eggs THEN ?x is a bird

Z6
IF ?x is a mammal ?x has pointed teeth ?x has claws ?x has forward-pointing eyes THEN ?x is a carnivore

Z7
IF ?x is a mammal ?x has hoofs THEN ?x is an ungulate

Z8
IF ?x is a mammal ?x chews cud THEN ?x is an ungulate

Z9
IF ?x is a carnivore ?x has tawny color ?x has dark spots THEN ?x is a cheetah

Z10
IF ?x is a carnivore ?x has tawny color ?x has black stripes THEN ?x is a tiger

Z11
IF ?x is an ungulate ?x has long legs THEN ?x is an ostrich

Z12
IF ?x is a bird ?x does not fly ?x swims THEN ?x is a penguin

Z13
IF ?x is an ungulate ?x has dark spots THEN ?x is a giraffe

Z14
IF ?x is an ungulate ?x has long legs ?x is black and white THEN ?x is a giraffe

Z15
IF ?x is a bird ?x is a good flyer THEN ?x is an albatross

Is Swifty a cheetah?

Backward chaining example
ZOOKEEPER – A Toy Rule-Based System

Z1 IF \(?x \) has hair THEN \(?x \) is a mammal
Z2 IF \(?x \) gives milk THEN \(?x \) is a mammal
Z3 IF \(?x \) has feathers THEN \(?x \) is a bird
Z4 IF \(?x \) flies THEN \(?x \) is a bird
Z5 IF \(?x \) flies \(?x \) lays eggs \(?x \) is a bird
Z6 IF \(?x \) is a mammal \(?x \) has pointed teeth \(?x \) has claws \(?x \) has forward pointing eyes THEN \(?x \) is a carnivore
Z7 IF \(?x \) is a mammal \(?x \) has hoofs THEN \(?x \) is an ungulate
Z8 IF \(?x \) is a mammal \(?x \) chews cud THEN \(?x \) is an ungulate
Z9 IF \(?x \) is a carnivore \(?x \) has tawny color \(?x \) has dark spots THEN \(?x \) is a cheetah

Z10 IF \(?x \) is a carnivore \(?x \) has tawny color \(?x \) has black stripes \(?x \) is a tiger
Z11 IF \(?x \) is an ungulate \(?x \) has long legs \(?x \) is a giraffe
Z12 IF \(?x \) is an ungulate \(?x \) has white color \(?x \) has black stripes \(?x \) is a zebra

Swifty has hair
Swifty has pointed teeth
Swifty has claws
Swifty has forward pointing eyes
Swifty has tawny color
Swifty has dark spots

Is Swifty a cheetah?

Backward chaining example

Z13 IF \(?x \) is a bird \(?x \) does not fly THEN \(?x \) is a giraffe
Z14 IF \(?x \) is a bird \(?x \) is black and white THEN \(?x \) is an ostrich
Z15 IF \(?x \) is a bird \(?x \) is a good flyer \(?x \) is an albatross

Swifty has hair
Swifty has pointed teeth
Swifty has claws
Swifty has forward pointing eyes
Swifty has tawny color
Swifty has dark spots

Is Swifty a cheetah?

Backward chaining example
ZOOKEEPER – A Toy Rule-Based System

27

Is Swifty a cheetah?

Backward chaining example

28

Is Swifty a cheetah?

Backward chaining example
ZOOKEEPER – A Toy Rule-Based System

Backward chaining example

Expert Systems can explain their reasoning:

Swifty is a cheetah because Swifty is a carnivore, Swifty has tawny color, Swifty has dark spots (Z9).

Swifty is a carnivore because Swifty is a mammal, Swifty has pointed teeth, Swifty has claws, Swifty has forward pointing eyes (Z6).

Swifty is a mammal because Swifty has hair (Z1).
Expert Systems

• We should note that MYCIN was never actually used in practice. People raised ethical and legal issues (what if it gave a wrong diagnosis?).
• R1/XCON saved DEC $25 million/year. It processed 80,000 orders with 95-98% accuracy.
• Can be effective in domains where experts are needed to make diagnoses, judgements, predictions, decisions, etc.
• They have found uses in several industries: financial, engineering, telecommunications, healthcare, agriculture, CRM, transportation, law, etc. Most of these applications are built in-house (i.e. proprietary commercial products – no longer considered AI?)

Some other Expert Systems

• PXDES
 Diagnoses lung cancer in patients
• DXplain
 Clinical Support diagnosis of various diseases
• DENDRAL
 Helps identify structure of unknown molecules
• CaDet
 Used to identify cancer in its early stages
• Dipmeter Advisor
 Analysis of data gathering during oil exploration (Schlumberger Corp.).
1980s Boom Times

The Seasons of AI

- **1950s – 1966 First AI Summer: Irrational Exuberance**
 Early successes in game playing, theorem proving, problem solving

- **1967 – 1977 First AI Winter**
 No useful deliverables led to loss of research funding and cancellation of AI programs. In UK The Lighthill Report (toy AI systems do not scale due to combinatorial explosion).

- **1978 – 1987 Second AI Summer/Spring**

- **1988 – 1993 Second AI Winter**
 Failure of AI Hardware companies (Symbolics, LMI, Lisp Machines) and AI Companies (Teknowledge, Inference Corp. etc.) Commercial deployments of Expert Systems were discontinued.

- **1993 – 2011 Third AI Summer (Mostly academic advances)**
 Statistical approaches and extensions to logic (Bayesian Nets), Non-Monotonic Reasoning (in Logic), Fuzzy Logic, advances in Machine Learning (Decision Trees, Random Forests, Neural Nets), Cognitive Models, Logic Programming, Case-Based Reasoning, Genetic Algorithms, Agent-based approaches, etc.

- **2011 – Now Third AI Spring**
 Rise of Deep Learning, Neuro-symbolic AI, ChatGPT and other chatbots, generative AI.
AI Approaches to Knowledge

• Expert Systems
• Logic
• Frames, Scripts, and Semantic Networks
• Knowledge Graphs

References

• XCON, Wikipedia Entry. Available at: https://en.wikipedia.org/wiki/Xcon
• R1/MYCIN, Wikipedia Entry, Available at: https://en.wikipedia.org/wiki/Mycin