CMSC 373 Artificial Intelligence Fall 2023 04-Problem Solving \& Search
 Deepak Kumar
 Bryn Mawr College

Search in AI

- Search in Al is a problem solving technique.

Not the same as a web search (ala Google)

- Given a problem, find a way (path) to get from an initial state to a goal state.

Image: https://medium.com/swlh/solving-mazes-with-depth-first-search-e315771317ae

Search Formulation

- State: A data structure that represents a situation
- Initial State
- Goal State

- Search Algorithm

Finds a way to get from initial state to goal state by systematically searching through the state space.

State Space: All possible states of the problem

State Space: 15-Puzzle

- Aka Search Tree

| 15 | 2 | 1 | 12 |
| :---: | :---: | :---: | :---: | :---: |
| 8 | 5 | 6 | 11 |
| 4 | 9 | 10 | 7 |
| 3 | 14 | 13 | |

State Space: US States

Does not include Alaska \& Hawaii Has 49 vertices
107 edges

State Space: Towers of Hanoi

- Search Algorithm: Searches through the search space systematically to find a path to the goal.

Image: https://www.researchgate.net/publication/2453845_Abstracting_the_Tower_of_Hanoi/figures?lo=1

Search Algorithms

- Blind Search

Brute force algorithms that can find a path to the goal if one exists. But no guarantee that it is optimal.
Examples: Depth-first search, breadth-first search.

- Informed Search

Guarantees that the path to goal is optimal.
Examples: Uniform-Cost Search, Greedy Best-first, A*, etc.

A Generic Blind Search Algorithm

- Uses a data structure, called frontier (a stack or a queue), to keep track of partially explored paths from initial state. Also uses a
data structure (a set), explored to keep track of states/nodes already explored. data structure (a set), explored to keep track of states/nodes already explored.
frontier \leftarrow a partial path containing the start node
explored $\leftarrow\}$
repeat
$p \leftarrow$ remove a partial path from the frontier
if p ends in a goal node/state return the path p as answer neighbors \leftarrow neighbors of last node (i) in p that are not in explored explored \leftarrow last node (i) in p
for each node n in neighbors
$q \leftarrow$ extend p to that neighbor, n
frontier \leftarrow add q
until frontier is empty
return that there are no paths from initial state to goal state

A Generic Blind Search Algorithm

- Uses a data structure, called frontier (a stack or a queue), to keep track of partially explored paths from initial state. Also uses a data structure, explored to keep track of states/nodes already explored.
frontier \leftarrow a partial path containing the start node
explored $\leftarrow\}$
$\stackrel{\text { repeat }}{ } \leftarrow$ remove a partial path from the frontier

Depth-first Search: frontier is a stack Breadth-first Search: frontier is a queue
if p ends in a goal node/state return the path p as answer neighbors \leftarrow neighbors of last node (i) in p that are not in explored explored \leftarrow last node (i) in p
for each node n in neighbors
$q \leftarrow$ extend p to that neighbor, n frontier \leftarrow add q
until frontier is empty
return that there are no paths from initial state to goal state

A Toy Example

frontier \leftarrow a partial path containing the start node
explored $\leftarrow\}$

repeat

$p \leftarrow$ remove a partial path from the frontier
if p ends in a goal node/state return the path p as answer
neighbors \leftarrow neighbors of last node (i) in p that are not in explored
explored \leftarrow last node (i) in p
for each node n in neighbors
$q \leftarrow$ extend p to that neighbor, n
frontier \leftarrow add q
until frontier is empty
return that there are no paths from initial state to goal state

A Toy Example

frontier \leftarrow a partial path containing the start node
explored $\leftarrow\}$
repeat
$p \leftarrow$ remove a partial path from the frontier
if p ends in a goal node/state return the path p as answer neighbors \leftarrow neighbors of last node (i) in p that are not in explored explored \leftarrow last node (i) in p
for each node n in neighbors

frontier \leftarrow add q

til frontier is empty
return that there are no paths from initial state to goal state

Trace on board

- Breadth-first Search (frontier is a queue)
- Depth-first Search (frontier is a stack)

Search Trees

Breadth-first Search

Depth-first Search

The Complexity of Search

- How long will it take for a blind search to find a path to goal if one exists?

Two concepts:

Search Depth, d
d is the depth at which the goal exists

The Complexity of Search

- How long will it take for a blind search to find a path to goal if one exists?

Two concepts:
Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d

d is the depth at which the goal was found

The Complexity of Search

- How long will it take for a blind search to find a path to goal if one exists?

Two concepts:

Branching Factor, b

b is the number of successors/neighbors of a state
Search Depth, d d is the depth at which the goal was found

Depth $=3$

Depth $=3$

In general, worst case

Worst case the algorithm will search b^{d} states/nodes. i.e. $\mathrm{O}\left(b^{d}\right)$

M\&C Puzzle

Average branching factor is ~ 1.4
For a solution length of 11,
a search algorithm will explore 1.4^{11} states

$1.4^{11}=\sim 41$
"Piece of cake!"

15-Puzzle

- Average Branching Factor is ~3
- Average number of moves to a solution is ~ 50
- That is a search algorithm will need to explore 3^{50} states
$3^{50}=717,897,987,691,852,588,770,249$
or $\sim 7.1789799 \times 10^{23}$

15-Puzzle

- Average Branching Factor is ~3
- Average number of moves to a solution is ~ 50
- That is a search algorithm will need to explore 3^{50} states
$3^{50}=717,897,987,691,852,588,770,249$
or $\sim 7.1789799 \times 10^{23}$

Combinatorial Explosion/Complexity Barrier

- If search is a ubiquitous requirement in Al problems. How do we confront the complexity??
- One solution: use bigger, faster computers
- Another solution: Find better search algorithms
- Towards informed search algorithms

Informed Search Algorithms

- Try to use additional information available in the problem specs More efficient than blind searches
- Provide an optimal solution (if one exists)
- Examples of information:

Solutions/Actions may have an associated cost: a measure of distance, number of moves, amount of time, \$cost,...

May make use of heuristic measures estimate of remaining distance/cost/time (but not exact!)

Information

- Numbers on edges denote costs Could be time in $\mathrm{min} /$ hours Could be distance etc.

- What is optimal path from \mathbf{s} to \mathbf{g} ?

Information

- Numbers on edges denote costs

Could be time in min /hours Could be distance etc.

Cost of optimal path is 17

- Define path cost function, $g(n)$ as cost of path from start node to node, n Example:
Cost of path g(s-b-c) = 13

Best-First Search aka Uniform Cost Search

Explores the most promising partial path based on $\mathbf{g}(\mathbf{n})$
frontier \leftarrow a partial path containing the start node explored \leftarrow \{ \}

repeat

$p \leftarrow$ remove a partial path from the frontier with the smallest $\mathbf{g}(\mathbf{n})$
if p ends in a goal node/state return the path p as answer neighbors \leftarrow neighbors of last node (i) in p that are not in explored explored \leftarrow last node (i) in p for each node n in neighbors
$q \leftarrow$ extend p to that neighbor, n
frontier \leftarrow add q
Trace on board...
until frontier is empty
return that there are no paths from initial state to goal state

More Information - Heuristics

- Numbers on edges denote costs Could be time in min /hours Could be distance etc.

- Define cost function, $\mathrm{h}(\mathrm{n})$ as cost of path from a node to goal Example:
Cost of path $h(b)=11$
h is a heuristic. An informal (but useful) estimate.

Greedy Best-First Search

Explores the most promising partial path based on \mathbf{h} (i)
frontier \leftarrow a partial path containing the start node
explored $\leftarrow\}$

repeat
$p \leftarrow$ remove a partial path from the frontier with the smallest $\mathbf{h}(\mathbf{i}), i$ is the last node in partial path
if p ends in a goal node/state return the path p as answer neighbors \leftarrow neighbors of last node (i) in p that are not in explored explored \leftarrow last node (i) in p for each node n in neighbors
$q \leftarrow$ extend p to that neighbor, n
frontier \leftarrow add q
until frontier is empty
return that there are no paths from initial state to goal state

A*Search

frontier \leftarrow a partial path containing the start node
explored $\leftarrow\}$
repeat
$p \leftarrow$ remove a partial path from the frontier with the smallest $\mathbf{f}(\mathbf{i}), \boldsymbol{i}$ is the last node in partial path if p ends in a goal node/state return the path p as answer
neighbors \leftarrow neighbors of last node (i) in p that are not in explored
explored \leftarrow last node (i) in p
for each node n in neighbors
$q \leftarrow$ extend p to that neighbor, n
frontier \leftarrow add q
Trace on board...
until frontier is empty
return that there are no paths from initial state to goal state

More about A* And Heuristics

- A* is guaranteed to find the optimal path, if one exists i.e. A^{*} is complete.
- The heuristic has to be admissible to guarantee optimal path. i.e. it has to be an underestimate of the actual cost.

More about A* And Heuristics

- A* is guaranteed to find the optimal path, if one exists i.e. A^{*} is complete.
- The heuristic has to be admissible to guarantee optimal path.
i.e. it has to be an underestimate of the actual cost.

Applications of A^{*}

- Robotics

Path planning

- Problem Solving Puzzles
- GPS Navigation
- And many many more!

Key Ideas

- Problem Solving as search
- Combating combinatorial explosion
- Using heuristics
- Many applications

References

- M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books, 2020.
- Nils Nilsson, Artificial Intelligence: A New Synthesis, Morgan Kauffman, 1998.

