
9/18/2023

1

CMSC 373 Artificial Intelligence
Fall 2023

04-Problem Solving & Search
Deepak Kumar

Bryn Mawr College

Search in AI

• Search in AI is a problem solving technique.
Not the same as a web search (ala Google)

• Given a problem, find a way (path) to get from an initial state to a goal
state.

Image: https://personal.math.ubc.ca/~cass/courses/m308-02b/projects/grant/fifteen.html

Image: https://medium.com/swlh/solving-mazes-with-depth-first-search-e315771317ae

2

1

2

9/18/2023

2

Search Formulation

• State: A data structure that represents a situation

• Initial State

• Goal State

• Search Algorithm
Finds a way to get from initial state to goal state by systematically
searching through the state space.

3

State Space: All possible states of the problem

Image: https://www.aiai.ed.ac.uk/~gwickler/missionaries.html 4

3

4

9/18/2023

3

State Space: 15-Puzzle

• Aka Search Tree

16! = 2x1013 different states

5

State Space: US States

Does not include Alaska & Hawaii
Has 49 vertices
107 edges

6

5

6

9/18/2023

4

State Space: Towers of Hanoi

• Search Algorithm: Searches through the search space systematically
to find a path to the goal.

Image: https://www.researchgate.net/publication/2453845_Abstracting_the_Tower_of_Hanoi/figures?lo=1
7

Search Algorithms

• Blind Search
Brute force algorithms that can find a path to the goal if one exists.
But no guarantee that it is optimal.
Examples: Depth-first search, breadth-first search.

• Informed Search
Guarantees that the path to goal is optimal.
Examples: Uniform-Cost Search, Greedy Best-first, A*, etc.

8

7

8

9/18/2023

5

A Generic Blind Search Algorithm

• Uses a data structure, called frontier (a stack or a queue), to keep track of partially explored paths from initial state. Also uses a
data structure (a set), explored to keep track of states/nodes already explored.

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

9

Initial State: CA
Goal State: PA
Partial Path: CA-OR-ID-MT
Neighbors of MT: ID, ND, SD, WY

A Generic Blind Search Algorithm

• Uses a data structure, called frontier (a stack or a queue), to keep track of partially explored paths from initial state. Also uses a
data structure, explored to keep track of states/nodes already explored.

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Depth-first Search: frontier is a stack
Breadth-first Search: frontier is a queue

10

9

10

9/18/2023

6

A Toy Example

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

1 6

2

4

3

5

start goal

11

A Toy Example

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

1 6

2

4

3

5

start goal

if n = goal
 return q as answer

12

11

12

9/18/2023

7

Trace on board

• Breadth-first Search (frontier is a queue)

• Depth-first Search (frontier is a stack)

13

Search Trees
1 6

2

4

3

5

start goal

1

5

4

32

4 5

6 65

1

2 3

4 5

46

Breadth-first Search Depth-first Search

14

13

14

9/18/2023

8

The Complexity of Search

• How long will it take for a blind search to find a path to goal if one
exists?

Two concepts:

Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d
d is the depth at which the goal exists

1 6

2

4

3

5

start goal

15

The Complexity of Search

• How long will it take for a blind search to find a path to goal if one
exists?

Two concepts:

Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d
d is the depth at which the goal was found

1 6

2

4

3

5

start goal

b=3

b=2

b=4

b=2

b=2

Average branching factor = 13/5 = 2.6

16

15

16

9/18/2023

9

The Complexity of Search

• How long will it take for a blind search to find a path to goal if one
exists?

Two concepts:

Branching Factor, b
b is the number of successors/neighbors of a state

Search Depth, d
d is the depth at which the goal was found

Depth = 3 Depth = 3
17

In general, worst case
d=0, 1

d=1, 𝑏1

d=2, 𝑏2

d=d, 𝑏𝑑

Goal

b

𝑏2

𝑏𝑑

Worst case the algorithm will search 𝑏𝑑 states/nodes. i.e. O(𝑏𝑑)

18

17

18

9/18/2023

10

M&C Puzzle

Image: https://www.aiai.ed.ac.uk/~gwickler/missionaries.html

Average branching factor is ~1.4

For a solution length of 11,
a search algorithm will explore 1.411 states

1.411 = ~41

“Piece of cake!”

19

15-Puzzle

• Average Branching Factor is ~3

• Average number of moves to a solution is ~50

• That is a search algorithm will need to
explore 350 states

350 = 717,897,987,691,852,588,770,249

or ~7.1789799 x 1023

20

19

20

9/18/2023

11

15-Puzzle

• Average Branching Factor is ~3

• Average number of moves to a solution is ~50

• That is a search algorithm will need to
explore 350 states

350 = 717,897,987,691,852,588,770,249

or ~7.1789799 x 1023

Image: https://www.freecodecamp.org/news/combinatorics-handle-with-care-ed808b48e5dd/ 21

Combinatorial Explosion/Complexity Barrier

• If search is a ubiquitous requirement in AI problems.
How do we confront the complexity??

• One solution: use bigger, faster computers

• Another solution: Find better search algorithms

• Towards informed search algorithms

22

21

22

9/18/2023

12

Informed Search Algorithms

• Try to use additional information available in the problem specs
More efficient than blind searches

• Provide an optimal solution (if one exists)

• Examples of information:

Solutions/Actions may have an associated cost:
 a measure of distance, number of moves, amount of time, $cost,…

May make use of heuristic measures
 estimate of remaining distance/cost/time (but not exact!)

23

Information

• Numbers on edges denote costs
Could be time in min/hours
Could be distance
etc.

• What is optimal path from s to g?

24

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

23

24

9/18/2023

13

Information

• Numbers on edges denote costs
Could be time in min/hours
Could be distance
etc.

• What is optimal path from s to g?

• Define path cost function, g(n) as cost of path from start node to node, n
Example:
Cost of path g(s-b-c) = 13

Cost of optimal path is 17

25

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

Best-First Search
aka Uniform Cost Search
Explores the most promising partial path based on g(n)

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier with the smallest g(n)

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Trace on board…

26

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

25

26

9/18/2023

14

More Information - Heuristics

• Numbers on edges denote costs
Could be time in min/hours
Could be distance
etc.

• Define cost function, h(n) as cost of path from a node to goal
Example:
Cost of path h(b) = 11

h is a heuristic. An informal (but useful) estimate.

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

Greedy Best-First Search

Explores the most promising partial path based on h(i)

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier with the smallest h(i), i is the last node in partial path

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Trace on board…

28

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

27

28

9/18/2023

15

A*Search

Explores the most promising partial path based on total cost f(i) = g(i) + h(i)

frontier ← a partial path containing the start node

explored ← { }

repeat
 p ← remove a partial path from the frontier with the smallest f(i), i is the last node in partial path

 if p ends in a goal node/state return the path p as answer

 neighbors ← neighbors of last node (i) in p that are not in explored

 explored ← last node (i) in p

 for each node n in neighbors

 q ← extend p to that neighbor, n

 frontier ← add q

until frontier is empty

return that there are no paths from initial state to goal state

Trace on board…

29

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

More about A* And Heuristics

• A* is guaranteed to find the optimal path, if one exists
i.e. A* is complete.

• The heuristic has to be admissible to guarantee optimal path.
i.e. it has to be an underestimate of the actual cost.

30

29

30

9/18/2023

16

More about A* And Heuristics

• A* is guaranteed to find the optimal path, if one exists
i.e. A* is complete.

• The heuristic has to be admissible to guarantee optimal path.
i.e. it has to be an underestimate of the actual cost.

31

11 6

5

s

a

c

b d

g

e
4 1612

3 10

7
2

5

4

12

14

11

Applications of A*

• Robotics
Path planning

• Problem Solving
Puzzles

• GPS Navigation

• And many many more!

32

31

32

9/18/2023

17

Key Ideas

• Problem Solving as search

• Combating combinatorial explosion

• Using heuristics

• Many applications

33

References

• M. Wooldridge: A Brief History of Artificial Intelligence. Flatiron Books,
2020.

• Nils Nilsson, Artificial Intelligence: A New Synthesis, Morgan
Kauffman, 1998.

34

33

34

	Slide 1: CMSC 373 Artificial Intelligence Fall 2023 04-Problem Solving & Search
	Slide 2: Search in AI
	Slide 3: Search Formulation
	Slide 4: State Space: All possible states of the problem
	Slide 5: State Space: 15-Puzzle
	Slide 6: State Space: US States
	Slide 7: State Space: Towers of Hanoi
	Slide 8: Search Algorithms
	Slide 9: A Generic Blind Search Algorithm
	Slide 10: A Generic Blind Search Algorithm
	Slide 11: A Toy Example
	Slide 12: A Toy Example
	Slide 13: Trace on board
	Slide 14: Search Trees
	Slide 15: The Complexity of Search
	Slide 16: The Complexity of Search
	Slide 17: The Complexity of Search
	Slide 18: In general, worst case
	Slide 19: M&C Puzzle
	Slide 20: 15-Puzzle
	Slide 21: 15-Puzzle
	Slide 22: Combinatorial Explosion/Complexity Barrier
	Slide 23: Informed Search Algorithms
	Slide 24: Information
	Slide 25: Information
	Slide 26: Best-First Search aka Uniform Cost Search
	Slide 27: More Information - Heuristics
	Slide 28: Greedy Best-First Search
	Slide 29: A*Search
	Slide 30: More about A* And Heuristics
	Slide 31: More about A* And Heuristics
	Slide 32: Applications of A*
	Slide 33: Key Ideas
	Slide 34: References

