Artificial Intelligence

Bayesian Networks

Adapted from slides by Tim Finin and Marie desJardins. Some material borrowed from Lise Getoor.

Outline

• Bayesian networks

- Network structure
- Conditional probability tables
- Conditional independence
- Inference in Bayesian networks
 - Exact inference
 - Approximate inference

Bayesian Belief Networks (BNs)

- Definition: **BN** = (**DAG**, **CPD**)
 - DAG: directed acyclic graph (BN' s structure)
 - **Nodes**: random variables (typically binary or discrete, but methods also exist to handle continuous variables)
 - Arcs: indicate probabilistic dependencies between nodes (*lack* of link signifies conditional independence)
 - **CPD**: conditional probability distribution (BN's parameters)
 - Conditional probabilities at each node, usually stored as a table (conditional probability table, or **CPT**)

 $P(x_i | \pi_i)$ where π_i is the set of all parent nodes of x_i

 Root nodes are a special case – no parents, so just use priors in CPD:

 $\boldsymbol{\pi}_i = \emptyset$, so $\boldsymbol{P}(\boldsymbol{x}_i \mid \boldsymbol{\pi}_i) = \boldsymbol{P}(\boldsymbol{x}_i)$

Note that we only specify P(A) etc., not $P(\neg A)$, since they have to add to one

Conditional independence and chaining

- Conditional independence assumption
 - $P(x_i | \pi_i, q) = P(x_i | \pi_i)$ where q is any set of variables (nodes) other than x_i and its successors
 - π_i blocks influence of other nodes on x_i and its successors (q influences x_i only through variables in π_i)

 With this assumption, the complete joint probability distribution of all variables in the network can be represented by (recovered from) local CPDs by chaining these CPDs:

 $P(x_1,...,x_n) = \prod_{i=1}^n P(x_i | \pi_i)$

Chaining: Example

Computing the joint probability for all variables is easy:

$$P(a, b, c, d, e)$$

$$= P(e | a, b, c, d) P(a, b, c, d)$$
by the product rule

$$= P(e | c) P(a, b, c, d)$$
by cond. indep. assumption

$$= P(e | c) P(d | a, b, c) P(a, b, c)$$

$$= P(e | c) P(d | b, c) P(c | a, b) P(a, b)$$

$$= P(e | c) P(d | b, c) P(c | a) P(b | a) P(a)$$

Topological semantics

- A node is conditionally independent of its nondescendants given its parents
- A node is **conditionally independent** of all other nodes in the network given its parents, children, and children's parents (also known as its **Markov blanket**)
- The method called **d-separation** can be applied to decide whether a set of nodes X is independent of another set Y, given a third set Z

Inference tasks

- Simple queries: Computer posterior marginal P(X_i | E=e)
 E.g., P(NoGas | Gauge=empty, Lights=on, Starts=false)
- Conjunctive queries:

 $- P(X_i, X_j | E=e) = P(X_i | e=e) P(X_j | X_i, E=e)$

- Optimal decisions: *Decision networks* include utility information; probabilistic inference is required to find P (outcome | action, evidence)
- Value of information: Which evidence should we seek next?
- Sensitivity analysis: Which probability values are most critical?
- **Explanation:** Why do I need a new starter motor?

Approaches to inference

• Exact inference

- Enumeration
- Belief propagation in polytrees
- Variable elimination
- Clustering / join tree algorithms
- Approximate inference
 - Stochastic simulation / sampling methods
 - Markov chain Monte Carlo methods
 - Genetic algorithms
 - Neural networks
 - Simulated annealing
 - Mean field theory

Direct inference with BNs

- Instead of computing the joint, suppose we just want the probability for *one* variable
- Exact methods of computation:
 - Enumeration
 - Variable elimination
- Join trees: get the probabilities associated with every query variable

Inference by enumeration

- Add all of the terms (atomic event probabilities) from the full joint distribution
- If E are the evidence (observed) variables and Y are the other (unobserved) variables, then:
 P(X|e) = α P(X, E) = α ∑ P(X, E, Y)
- Each P(X, E, Y) term can be computed using the chain rule
- Computationally expensive!

Example: Enumeration

- $P(x_i) = \sum_{\pi i} P(x_i \mid \pi_i) P(\pi_i)$
- Suppose we want P(D=true), and only the value of E is given as true
- $P(d|e) = \alpha \Sigma_{ABC} P(a, b, c, d, e)$ = $\alpha \Sigma_{ABC} P(a) P(b|a) P(c|a) P(d|b,c) P(e|c)$
- With simple iteration to compute this expression, there's going to be a lot of repetition (e.g., P(e|c) has to be recomputed every time we iterate over C=true)

Exercise: Enumeration

Summary

- Bayes nets
 - Structure
 - Parameters
 - Conditional independence
 - Chaining
- BN inference
 - Enumeration
 - Variable elimination
 - Sampling methods