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Bayesian Reasoning 

Adapted from slides by 
Tim Finin and 
Marie desJardins. 
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Outline 

•  Probability theory 
•  Bayesian inference 

–  From the joint distribution 
–  Using independence/factoring 
–  From sources of evidence 
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Abduction 
•  Abduction is a reasoning process that tries to form plausible 

explanations for abnormal observations 
– Abduction is distinctly different from deduction and induction 
– Abduction is inherently uncertain 

•  Uncertainty is an important issue in abductive reasoning 
•  Some major formalisms for representing and reasoning about  

uncertainty 
– Mycin’s certainty factors (an early representative) 
– Probability theory (esp. Bayesian belief networks) 
– Dempster-Shafer theory 
–  Fuzzy logic 
– Truth maintenance systems 
– Nonmonotonic reasoning 
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Abduction 
•  Definition (Encyclopedia  Britannica): reasoning that derives 

an explanatory hypothesis from a given set of facts 
– The inference result is a hypothesis that, if true, could 

explain the occurrence of the given facts 
•  Examples 

– Dendral, an expert system to construct 3D structure of 
chemical compounds  
•  Fact: mass spectrometer data of the compound and its 

chemical formula 
•  KB: chemistry, esp. strength of different types of bounds 
•  Reasoning: form a hypothetical 3D structure that satisfies the 

chemical formula, and that would most likely produce the 
given mass spectrum 
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– Medical diagnosis 
•  Facts: symptoms, lab test results, and other observed findings 

(called manifestations) 
•  KB: causal associations between diseases and manifestations 
•  Reasoning: one or more diseases whose presence would 

causally explain the occurrence of the given manifestations 
– Many other reasoning processes (e.g., word sense 

disambiguation in natural language process, image 
understanding, criminal investigation) can also been seen 
as abductive reasoning 

Abduction examples (cont.) 
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Comparing abduction, deduction, 
 and induction 

Deduction: major premise:       All balls in the box are black 
                    minor premise:       These balls are from the box 
                    conclusion:             These balls are black 
 
Abduction: rule:                        All balls in the box are black 
                    observation:            These balls are black 
                    explanation:   These balls are from the box 
 
Induction:  case:                        These balls are from the box 
                    observation:            These balls are black 
                    hypothesized rule:   All ball in the box are black 
                      

A => B   
A  
--------- 
B 

A => B   
         B 
------------- 
Possibly A 

Whenever 
A then B 
------------- 
Possibly  
A => B 

Deduction reasons from causes to effects 
Abduction reasons from effects to causes 
Induction reasons from specific cases to general rules 
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Characteristics of abductive 
reasoning 

•  “Conclusions” are hypotheses, not theorems (may be 
false even if rules and facts are true)  

–  E.g., misdiagnosis in medicine 

•  There may be multiple plausible hypotheses 
–  Given rules A => B and C => B, and fact B, both A and C 

are plausible hypotheses  
–  Abduction is inherently uncertain 
–  Hypotheses can be ranked by their plausibility (if it can be 

determined) 
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Characteristics of abductive 
reasoning (cont.) 

•  Reasoning is often a hypothesize-and-test cycle  
–  Hypothesize: Postulate possible hypotheses, any of which would 

explain the given facts (or at least most of the important facts) 
–  Test: Test the plausibility of all or some of these hypotheses 
–  One way to test a hypothesis H is to ask whether something that is 

currently unknown–but can be predicted from H–is actually true 
•  If we also know A => D and C => E, then ask if D and E are 

true 
•  If D is true and E is false, then hypothesis A becomes more 

plausible (support for A is increased; support for C is 
decreased) 
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Characteristics of abductive 
reasoning (cont.) 

•  Reasoning is non-monotonic  
–  That is, the plausibility of hypotheses can increase/

decrease as new facts are collected  
–  In contrast, deductive inference is monotonic: it never 

change a sentence’s truth value, once known 
–  In abductive (and inductive) reasoning, some 

hypotheses may be discarded, and new ones formed, 
when new observations are made 
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Sources of uncertainty 

• Uncertain inputs 
– Missing data 
– Noisy data 

• Uncertain knowledge 
– Multiple causes lead to multiple effects 
–  Incomplete enumeration of conditions or effects 
–  Incomplete knowledge of causality in the domain 
– Probabilistic/stochastic effects 

• Uncertain outputs 
– Abduction and induction are inherently uncertain 
– Default reasoning, even in deductive fashion, is uncertain 
–  Incomplete deductive inference may be uncertain 

Probabilistic reasoning only gives probabilistic 
results (summarizes uncertainty from various sources) 
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Decision making with uncertainty 

•  Rational behavior: 
– For each possible action, identify the possible outcomes 
– Compute the probability of each outcome 
– Compute the utility of each outcome 
– Compute the probability-weighted (expected) utility 

over possible outcomes for each action 
– Select the action with the highest expected utility 

(principle of Maximum Expected Utility) 



12 

Bayesian reasoning 

•  Probability theory 
•  Bayesian inference 

–  Use probability theory and information about independence  
–  Reason diagnostically (from evidence (effects) to conclusions 

(causes)) or causally (from causes to effects) 

•  Bayesian networks 
–  Compact representation of probability distribution over a set of 

propositional random variables 
–  Take advantage of independence relationships 
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Why probabilities anyway? 
•  Kolmogorov showed that three simple axioms lead to the 

rules of probability theory 
–  De Finetti, Cox, and Carnap have also provided compelling 

arguments for these axioms 
1.  All probabilities are between 0 and 1: 

•  0 ≤ P(a) ≤ 1 
2.  Valid propositions (tautologies) have probability 1, and 

unsatisfiable propositions have probability 0: 
•  P(true) = 1 ; P(false) = 0 

3.  The probability of a disjunction is given by: 
•  P(a ∨ b) = P(a) + P(b) – P(a ∧ b) 

a∧b a b 
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Probability theory 

•  Random variables 
–  Domain 

•  Atomic event: complete 
specification of state 

•  Prior probability: degree 
of belief without any other 
evidence 

•  Joint probability: matrix 
of combined probabilities 
of a set of variables 

•  Alarm, Burglary, Earthquake 
–  Boolean (like these), discrete, 

continuous 
•  (Alarm=True ∧ Burglary=True ∧ 

Earthquake=False) or equivalently 
(alarm ∧ burglary ∧ ¬earthquake) 

•  P(Burglary) = 0.1 

•  P(Alarm, Burglary) = 

alarm ¬alarm 
burglary 0.09 0.01 
¬burglary 0.1 0.8 
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Probability theory (cont.) 

•  Conditional probability: 
probability of effect given causes 

•  Computing conditional probs: 
–  P(a | b) = P(a ∧  b) / P(b) 
–  P(b): normalizing constant 

•  Product rule: 
–  P(a ∧ b) = P(a | b) P(b) 

•  Marginalizing: 
–  P(B) = ΣaP(B, a) 
–  P(B) = ΣaP(B | a) P(a) 

(conditioning) 

•  P(burglary | alarm) = 0.47 
P(alarm | burglary) = 0.9 

•  P(burglary | alarm) = 
  P(burglary ∧ alarm) / P(alarm) 
  = 0.09 / 0.19 = 0.47 

•  P(burglary ∧ alarm) =  
  P(burglary | alarm) P(alarm) = 
  0.47 * 0.19 = 0.09 

•  P(alarm) = 
   P(alarm ∧ burglary) + 
   P(alarm ∧ ¬burglary) = 
   0.09 + 0.1 = 0.19 
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Example: Inference from the joint 
alarm ¬alarm 
earthquake ¬earthquake earthquake ¬earthquake 

burglary 0.01 0.08 0.001 0.009 
¬burglary 0.01 0.09 0.01 0.79 

P(Burglary | alarm) = α P(Burglary, alarm) 
     = α [P(Burglary, alarm, earthquake) + P(Burglary, alarm, ¬earthquake) 
     = α [ (0.01, 0.01) + (0.08, 0.09) ] 
     = α [ (0.09, 0.1) ] 

Since P(burglary | alarm) + P(¬burglary | alarm) = 1, α = 1/(0.09+0.1) = 5.26 
    (i.e., P(alarm) = 1/α = 0.109      Quizlet: how can you verify this?) 

P(burglary | alarm) = 0.09 * 5.26 = 0.474 

P(¬burglary | alarm) = 0.1 * 5.26 = 0.526 
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Exercise: Inference from the joint 

•  Queries: 
– What is the prior probability of smart? 
– What is the prior probability of study? 
– What is the conditional probability of prepared, given 

study and smart? 
• Save these answers for next time! J  

p(smart ∧ 
 study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared 0.432 0.16 0.084 0.008 

¬prepared 0.048 0.16 0.036 0.072 
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Independence 
•  When two sets of propositions do not affect each others’ 

probabilities, we call them independent, and can easily 
compute their joint and conditional probability: 
–  Independent (A, B)  ↔  P(A ∧ B) = P(A) P(B),  P(A | B) = P(A) 

•  For example, {moon-phase, light-level} might be 
independent of {burglary, alarm, earthquake} 
–  Then again, it might not:  Burglars might be more likely to 

burglarize houses when there’s a new moon (and hence little light) 
–  But if we know the light level, the moon phase doesn’t affect 

whether we are burglarized 
–  Once we’re burglarized, light level doesn’t affect whether the alarm 

goes off 
•  We need a more complex notion of independence, and 

methods for reasoning about these kinds of relationships 
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Exercise: Independence 

•  Queries: 
– Is smart independent of study? 
– Is prepared independent of study?  

p(smart ∧ 
 study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared 0.432 0.16 0.084 0.008 

¬prepared 0.048 0.16 0.036 0.072 
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Conditional independence 
•  Absolute independence: 

–  A and B are independent if and only if P(A ∧ B) = P(A) P(B); 
equivalently, P(A) = P(A | B) and P(B)  = P(B | A) 

•  A and B are conditionally independent given C if and only if 
–  P(A ∧ B | C) = P(A | C) P(B | C) 

•  This lets us decompose the joint distribution: 
–  P(A ∧ B ∧ C) = P(A | C) P(B | C) P(C) 

•  Moon-Phase and Burglary are conditionally independent 
given Light-Level 

•  Conditional independence is weaker than absolute 
independence, but still useful in decomposing the full joint 
probability distribution 
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Exercise: Conditional independence 

•  Queries: 
– Is smart conditionally independent of prepared, given 

study? 
– Is study conditionally independent of prepared, given 

smart? 

p(smart ∧ 
 study ∧ prep) 

smart ¬smart 

study ¬study study ¬study 

prepared 0.432 0.16 0.084 0.008 

¬prepared 0.048 0.16 0.036 0.072 
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Bayes’s rule 
•  Bayes’s rule is derived from the product rule: 

–  P(Y | X) = P(X | Y) P(Y) / P(X) 

•  Often useful for diagnosis:  
–  If X are (observed) effects and Y are (hidden) causes,  
–  We may have a model for how causes lead to effects (P(X | Y)) 
–  We may also have prior beliefs (based on experience) about the 

frequency of occurrence of effects (P(Y)) 
–  Which allows us to reason abductively from effects to causes (P(Y | 

X)). 
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Bayesian inference 
•  In the setting of diagnostic/evidential reasoning 

– Know prior probability of hypothesis    
        conditional probability  

– Want to compute the posterior probability 
•  Bayes’ theorem (formula 1): 

onsanifestatievidence/m                                      

hypotheses                                             
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… … 
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Simple Bayesian diagnostic reasoning 

•  Knowledge base: 
–  Evidence / manifestations:  E1, …, Em 

–  Hypotheses / disorders:  H1, …, Hn 
•  Ej and Hi are binary; hypotheses are mutually exclusive (non-

overlapping) and exhaustive (cover all possible cases) 
–  Conditional probabilities:  P(Ej | Hi), i = 1, …, n; j = 1, …, m 

•  Cases (evidence for a particular instance): E1, …, Em 

•  Goal: Find the hypothesis Hi with the highest posterior 
–  Maxi P(Hi | E1, …, Em) 
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Bayesian diagnostic reasoning II 

•  Bayes’ rule says that 
–  P(Hi | E1, …, Em) = P(E1, …, Em | Hi) P(Hi) / P(E1, …, Em) 

•  Assume each piece of evidence Ei is conditionally 
independent of the others, given a hypothesis Hi, then: 
–  P(E1, …, Em | Hi) = ∏m

j=1 P(Ej | Hi) 

•  If we only care about relative probabilities for the Hi, then 
we have: 
–  P(Hi | E1, …, Em) = α P(Hi) ∏m

j=1 P(Ej | Hi) 
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Limitations of simple  
Bayesian inference 

•  Cannot easily handle multi-fault situation, nor cases where 
intermediate (hidden) causes exist: 
–  Disease D causes syndrome S, which causes correlated 

manifestations M1 and M2 

•  Consider a composite hypothesis H1 ∧ H2, where H1 and H2 
are independent. What is the relative posterior? 
–  P(H1 ∧ H2 | E1, …, Em) = α P(E1, …, Em | H1 ∧ H2) P(H1 ∧ H2) 

  = α P(E1, …, Em | H1 ∧ H2) P(H1) P(H2) 
  = α ∏m

j=1 P(Ej | H1 ∧ H2) P(H1) P(H2) 

•  How do we compute P(Ej | H1 ∧ H2) ?? 
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Limitations of simple Bayesian 
inference II 

•  Assume H1 and H2 are independent, given E1, …, Em? 
–  P(H1 ∧ H2 | E1, …, Em) = P(H1 | E1, …, Em) P(H2 | E1, …, Em) 

•  This is a very unreasonable assumption 
–  Earthquake and Burglar are independent, but not given Alarm: 

•  P(burglar | alarm, earthquake) << P(burglar | alarm) 

•  Another limitation is that simple application of Bayes’s rule doesn’t 
allow us to handle causal chaining: 
–  A: this year’s weather; B: cotton production; C: next year’s cotton price 
–  A influences C indirectly:  A→ B → C 
–  P(C | B, A) = P(C | B) 

•  Need a richer representation to model interacting hypotheses, 
conditional independence, and causal chaining 

•  Next time: conditional independence and Bayesian networks! 


