Definite Clauses & Horn Clauses

- **Clause**: A disjunction of literals

 e.g. \(\neg R \lor \neg P \lor \neg Q \)

- **Definite Clause**: A clause with exactly one positive literal

 e.g. \(\neg R \lor Q \lor P \)

- **Horn Clause**: A clause with at most one positive literal

 e.g. \(\neg R \lor \neg Q \lor P \)

\(\neg R \lor \neg Q \lor P \)	aka Goal
\(\neg R \lor \neg Q \)	aka Fact
\(P \)	aka Fact

All definite clauses are Horn Clauses.
Definite & Horn Clauses – Why bother?

• Every definite clause can be written as an implication.

$$\neg R \lor \neg Q \lor P \equiv R \land Q \Rightarrow P$$

$$P \equiv \text{True} \Rightarrow P \quad \text{Fact}$$

• Inference with Horn Clauses can be done using Forward Chaining and Backward Chaining algorithms. This is the basis for Logic programming.

• Entailment with Horn Clauses can be done in linear time!

Agents with Knowledge and Reasoning

• Knowledge Representation & Reasoning (KRR) Systems

KnowledgeBase

"Knowledge" + Inference Engine

• **Knowledge** – set of sentences that describe facts about the world (or domain)

• **Inferences** – procedures/rules that operate on facts to infer new facts
Forward Chaining Inference

KnowledgeBase

- Known Facts (positive literals)
- Inference Engine (Forward Chaining)

Tell/Sense/Ask

Response (Answer/Do Something)

Forward Chaining

\[P \Rightarrow Q \]
\[L \land M \Rightarrow P \]
\[B \land L \Rightarrow M \]
\[A \land P \Rightarrow L \]
\[A \land B \Rightarrow L \]
\[A \]
\[B \]

Forward Chaining Algorithm
Starting from the leaves (facts), propagate the inference up the graph as far as possible. Wherever a conjunction appears, the propagation waits until all conjuncts are known before proceeding.

Is sound and complete (see text).
aka Data Driven Reasoning.
Forward Chaining Inference

\[R \land Q \Rightarrow P \]

Inference Engine (Forward Chaining)

Tell Q

P!

Backward Chaining Inference

• Works backwards from the query

\[R \land Q \Rightarrow P \]

Inference Engine (Backward Chaining)

Ask P?

Yes
Backward Chaining

\[P \Rightarrow Q \]
\[L \land M \Rightarrow P \]
\[B \land L \Rightarrow M \]
\[A \land P \Rightarrow L \]
\[A \land B \Rightarrow L \]
\[A \]
\[B \]

Backward Chaining Algorithm

Starting from the query, \(q \) if it is known to be True
Then answer yes. Otherwise, find all implications whose
Conclusion is \(q \). If all the premises of the one of those
Implications can be proved True (by backward chaining), then \(q \) is True.
Is sound and complete (see text).
aka Goal Driven Reasoning.