CMSC 372
Artificial Intelligence

Fall 2017

Game Playing

• 2-person, zero-sum games
• Tic-Tac-Toe, checkers, chess, etc.
• Base algorithm: Minimax
• Improvised with α-β Pruning
Minimax Game Tree

The Minimax Algorithm

Function minimax(n) returns (pbv, move)

 if n at depth bound
 return (e(n), move(n))
 expand n to \(n_1, n_2, \ldots, n_b \) successors

 if n is a MAX node:
 cbv = -\(\infty \), bestMove = \(\emptyset \)
 for each \(n_i \text{ in } n_1, n_2, \ldots, n_b \)
 bv, move = minimax(\(n_i \))
 if bv > cbv
 cbv = bv, bestMove = move
 return (cbv, bestMove)

 if n is a MIN node:
 cbv = \(\infty \), bestMove = \(\emptyset \)
 for each \(n_i \text{ in } n_1, n_2, \ldots, n_b \)
 bv, move = minimax(\(n_i \))
 if bv < cbv
 cbv = bv, bestMove = move
 return (cbv, bestMove)
Which Move? What Value?

Minimax with α-β Pruning
Minimax with α-β Pruning

- α = value of the best (highest value) choice we have at any choice point along path for MAX
- β = value of the best (lowest value) choice we have at any choice point along path for MIN
- α- value of a MAX node can never decrease
- β- value of a MIN node can never increase

α-β Pruning Rules

- α-cutoff: discontinue search below any MIN node whose $\beta \leq \alpha$ of its MAX ancestors.
- β-cutoff: discontinue search below any MAX node whose $\alpha \geq \beta$ of its MIN ancestors.
Minimax with α-β Pruning

Function minimax-α-β(n, α, β) returns (pbv, move)
 if n at depth bound
 return (e(n), move(n))
 expand n to \(n_1, n_2, ..., n_b \) successors

if n is a MAX node:
 bestMove = Ø
 for each \(n_i \) in \(n_1, n_2, ..., n_b \)
 bv, move = minimax-α-β \(n_i, α, β \)
 if bv > α
 α = bv, bestMove = move
 if α >= β
 return (β, bestMove)
 return (α, bestMove)

if n is a MIN node:
 bestMove = Ø
 for each \(n_i \) in \(n_1, n_2, ..., n_b \)
 bv, move = minimax-α-β \(n_i, α, β \)
 if bv < β
 β = bv, bestMove = move
 if β <= α
 return (α, bestMove)
 return (β, bestMove)
α-β Pruning

Depth limit = 3

(α = -∞, β = ∞)
α-β Pruning

$\alpha = -\infty$, $\beta = \infty$

Depth limit = 3

![Diagram of α-β Pruning with depth limit 3](image-url)
\[\alpha - \beta \text{ Pruning} \]

\((\alpha = -\infty, \beta = \infty)\)

\[
\begin{align*}
&3 & 12 & 8 \\
\end{align*}
\]
\(\alpha - \beta \) Pruning

\((\alpha = -\infty, \beta = \infty)\)

\[(\alpha = -\infty, \beta = 3)\]

\[3 \quad 12 \quad 8\]
α-β Pruning

(\(\alpha = -\infty, \beta = \infty\))

(\(\alpha = -\infty, \beta = 3\))

3 12 8

3

α-β Pruning

(\(\alpha = -\infty, \beta = \infty\))

(\(\alpha = 3, \beta = \infty\))

3 12 8

3
\(\alpha - \beta \) Pruning

\((\alpha = -\infty, \beta = \infty) \)

\((\alpha = -\infty, \beta = 3) \)

\((\alpha = 3, \beta = \infty) \)

\((\alpha = 3, \beta = 2) \)

\((\alpha = 3, \beta = \infty) \)
\(\alpha - \beta \) Pruning

\[\begin{aligned}
\left(\alpha = -\infty, \beta = \infty \right) \\
\left(\alpha = -\infty, \beta = 3 \right) \\
\left(\alpha = 3, \beta = \infty \right) \\
\left(\alpha = 3, \beta = 2 \right)
\end{aligned} \]

\(\alpha - \) cutoff
\(\alpha-\beta\) Pruning

(\(\alpha = -\infty, \beta = \infty\))

(\(\alpha = -\infty, \beta = 3\))

(\(\alpha = 3, \beta = \infty\))

(\(\alpha = 3, \beta = 3\))

(\(\alpha = 3, \beta = \infty\))

\(\alpha\)-cutoff
\(\alpha - \beta \) Pruning

\[
\begin{align*}
\alpha &= -\infty, \quad \beta = 3 \\
\alpha &= 3, \quad \beta = \infty
\end{align*}
\]

\(\alpha \)-cutoff
Minimax with α-β Pruning

Function minimax-α-β(n, α, β) returns (pbv, move)

if n at depth bound
 return (e(n), move(n))
expand n to \(n_1, n_2, ..., n_b\) successors

if n is a MAX node:
 bestMove = Ø
 for each \(n_i\) in \(n_1, n_2, ..., n_b\)
 bv, move = minimax-α-β \((n_i, \alpha, \beta)\)
 if bv > \(\alpha\)
 \(\alpha = bv\), bestMove=move
 if \(\alpha = \beta\)
 return (\(\beta\), bestMove)
 return (\(\alpha\), bestMove)

if n is a MIN node:
 bestMove = Ø
 for each \(n_i\) in \(n_1, n_2, ..., n_b\)
 bv, move = minimax-α-β \((n_i, \alpha, \beta)\)
 if bv < \(\beta\)
 \(\beta = bv\), bestMove=move
 if \(\beta = \alpha\)
 return (\(\alpha\), bestMove)
 return (\(\beta\), bestMove)
Game Strategies

- Base algorithm: Minimax
- Improved Efficiency: \(\alpha-\beta \) Pruning
- Progressive Deepening
- Move Ordering
- Game specific heuristics

Another Example

\((\alpha = -\infty, \beta = \infty)\)

```
8 7 3 9

9 8 2 4
```

\(\text{Move ordering:}
8 7 3 9
9 8 2 4
\)