
CS 337: Algorithms: Design & Practice  
Lab#10: Cryptographic Hash Functions

In this lab you will familiarize yourselves with Cryptographic Hash Functions. Specifically, the
MD-family and SHA-family of hash functions. We will primarily focus on MD5 and SHA-256
though, as you will see, other newer as well as older versions are also available in case you
would like to explore.

Given the prolific use of cryptographic hash functions you must be wondering how come you
have not come across them any sooner. Actually, you have been using these in the background
almost on a daily basis. They generally operate in the background ensuring the integrity of your
data/mail transfers, software downloads, online transactions, etc. On the other hand, as a
computer scientist, you may not have explicitly used them. We will fix that in today’s lab. In
fact, you will see that cryptographic hash functions are readily available for to you put them to
use!

A cryptographic function operates as shown below:

Meet MD5 & SHA-256

Given how often these are used, most Linux distributions provide easy access to these. First, let
us create some data/text/message files to hash:

• Create a small text file called, TwoCities.txt, with the following line in it: 
 
It	was	the	best	of	times,	it	was	the	worst	of	times. 

• Create a slightly larger text file, called anassa.txt, with the following text in it: 
 
Anassa	Kata 
(Bryn	Mawr	College	Cheer) 
 
Anassa	kata,	kalo	kale, 
Ia	ia	ia	Nike, 
Bryn	Mawr,	Bryn	Mawr,	Bryn	Mawr! 
 
Translation 
Queen,	descend, 
I	invoke	you,	fair	one. 
Hail,	hail,	hail,	victory, 

1

Bryn	Mawr,	Bryn	Mawr,	Bryn	Mawr! 

• Copy a large file, say the text of Moby Dick, from: 
 
/home/gtowell/Public/337/Lab10/GibonOne.txt 

• Copy an image file, for example SpongeBob.png (the image shown here) from 
/home/gtowell/Public/337/Lab10/SpongeBob.png 

• Lastly, we will use an executable software file, the hashing function md5 which is
available on most Linux installations as: /bin/md5sum 
On my mac it is at	/usr/local/bin/md5sum. (It may not be on your mac; I have no
idea if it comes with Windows.)

Now that we have five different “messages” we can try to hash them. There are two ways: (1)
Through the command line (commands: md5sum, and sha256sum), and (2) Using a program.
Let’s do the command line first:

Run the command shown below:

%	ls

anassa.txt		moby10b.txt		SpongeBob.png	TwoCities.txt

As you can see, there are four files, as described above. Let’s peek in the small file: 

%	cat	TwoCities.txt	

It	was	the	best	of	times,	it	was	the	worst	of	times.

Next, let us hash the file, using MD5 (md5sum): 

%	md5sum	TwoCities.txt	

956a76445c14f466cddf5543537c5fa9		TwoCities.txt

md5sum returns the resulting hash value of the supplied file as a sequence of hexadecimal digits.
There are exactly 32 hex digits that make up the hash value.

Let’s try the same with SHA256 (sha256sum): 

%	sha256sum	TwoCities.txt	

df5a6b5b351847beaac23527dd9e00a74da07a95f2a4d39f76861b9fe6e61062	
TwoCities.txt 
 
sha256sum, like md5sum, returns a similar looking sequence of hexadecimal digits, but it is
40 digits long.

2

§ Question 1.  
 
(a) MD5 digests (hash values) are __________ bits long. 
 
(b) SHA-1 digests (hash values) are __________ bits long.

——————————————————————————————————-

Using md5sum and sha256sum lets us hash all the files we have gathered:

%	md5sum	TwoCities.txt	anassa.txt	moby10b.txt

956a76445c14f466cddf5543537c5fa9		TwoCities.txt

0366a6b885290b0f499b6d57500fc381		anassa.txt

c31d8a45296df3592e8aaf08566ae3c8		moby10b.txt

%	md5sum	SpongeBob.png	/bin/md5sum

ff87eeb8e408f67954c447e90626710f		SpongeBob.png

8212a57147750550c7fd08f25ef211ae		/bin/md5sum

Notice that no matter the size, or type of file (text, image, executable code), the hash function
returns exactly the same length of hash value. Also, your checksum for /bin/md5sum will
likely be different from what is shown above. Why?

Run sha256sum on all the five files and observe the results.

One of the unique aspects of these hash functions is that even the tiniest of changes in the input
message results in a completely different hash value. In the TwoCities.txt file, change the
first letter (“I”) to lowercase (“i”) and save the file as TwoCities2.txt. Run both md5sum
and sha256sum on both files (TwoCities.txt and TwoCities2.txt). Compare the
resulting hash values.

§Question 2. Processing TwoCities.txt and TwoCities2.txt 
 
(a) Was the MD5 digest produced for the two files similar, or different? __________

(b) Was the SHA-256 digest produced for the two files similar, or different? __________

Explain

——————————————————————————————————-

MD5 and SHA-256 in Java & Python

Both Java and Python (and most other modern programming languages) provide libraries that
have implementations of several message digest functions. In this lab, we will only work in
Java. You can look at the Python hashlib library in Python reference to see how you would do

3

the same lab in Python. For more details, and several other useful functions available, please
feel free to consult the Java and Python References.

Hashing a String - Java

In Java, the class MessageDigest provides access to the message digest functions. Every Java
implementation is required to support at least MD5, SHA-1, and SHA-256 algorithms. In order
to use any algorithm, you have to create a MessageDigest instance of it. You can do this using
the getInstance() method, which is defined as:

static	MessageDigest	getInstance(String	algorithm) 
//	Returns	a	MessageDigest	object	that	implements	the	 
//	specified	digest	algorithm.

The method, digest() can then be used on the instance of MessageDigest to compute the
hash value of an array of bytes (byte	[]):

byte[]	digest(byte[]	input) 
//	Returns	the	hash	value	of	the	given	input	byte	array.

Thus, given a string (say “Bryn	Mawr”), you first have to convert it to a byte array. This is
shown below:

String	message	=	“Bryn	Mawr”; 
byte[]	byteMessage	=	message.getBytes(“UTF-8”);

The String method, getBytes() converts the string object into the encoding specified. Now,
we can write a function, let us call it hashString(), to convert a message (String) into its
hash value using a specific algorithm and return it as a string of hexadecimal digits. This is
shown below:

String	hashString	(String	message,	String	algorithm)	{ 
			//	Compute	the	hash	value	of	message	using	algorithm	and 
			//	return	a	string	representation	of	it. 
			byte[]	hashedBytes	=	null;	 //	will	store	the	hash	value	of	message 
			try	{ 
						//	instantiate	the	specified	algorithm.	 
						//	It	may	not	exist,	thus	the	try-catch 
						MessageDigest	digest	=	MessageDigest.getInstance(algorithm); 
						 
						//	Compute	the	hash	value	of	message 
						hashedBytes	=	digest.digest(message.getBytes(“UTF-8”)); 
			catch	(NoSuchAlgorithmExecption	|	 
										UnsupportedEncodingException	e)	{ 
						e.printStackTrace(); 
			} 
			//	Convert	hash	value	(in	byte[])	to	a	hex	String	and	return	result 
			return	bToH(hashedBytes); 
}	//	hashString()

4

Everything, except the return statement above should now make sense, given the descriptions
above. Since the digest() method returns an array of bytes, so that we can print it out as a
hexadecimal string, we need to convert it to a String of hex digits. The function bToH(), that
you have to write, accomplishes that as follows:

String	bToH(byte[]	value)	{ 
			//	Converts	value	to	a	string	of	hex	digits 
			StringBuilder	sb	=	new	StringBuilder(value.length*2);	  
			//	Why,	length*2	?	See	Question	3. 
			for	(byte	b	:	value) 
						sb.append(String.format(“%02x”,	b)); 
			return	sb.toString(); 
}	//	bToH()

 § Question 3. Why, in the function above, is the length of the String, sb defined to be twice
the length of the array, value?.

——————————————————————————————————-

Hashing a String – Python

Python’s hashlib module, like other programming languages, provides implementations of
several standard hash functions though a common interface.

To use a specific hash function, you have to first instantiate it, and then use the update() and
digest() methods (see below) to compute hash values. Here is an example: 

>>>	msg	=	b"Bryn	Mawr" 

The “b” prefix encodes the string using ASCII (or byte) encoding. You can then compute the
hash value of msg as shown below: 

>>>	digest	=	hashlib.new("md5")#	creates	an	instance	of	MD5

>>>	digest.update(msg)				#adds	msg	to	hash	value	computation

>>>	digest.digest()	 #	completes	computation,	returns	result 
b'\x03\xb8qF\xec\x1c]\xd0<x\x986\xdaM\xb7\xc2'

To get a nicely converted hexadecimal result, you can use the hexdigest() function:

>>>	digest.hexdigest() 
'03b87146ec1c5dd03c789836da4db7c2' 

To see what algorithms are available for instantiation, you can examine the value of
algorithms_available variable in hashlib: 

5

>>>	hashlib.algorithms_available 
{'SHA1',	'SHA224',	'SHA',	'SHA384',	'ecdsa-with-SHA1',	'SHA256',	
'SHA512',	'md4',	'md5',	'sha1',	'dsaWithSHA',	'DSA-SHA',	'sha224',	
'dsaEncryption',	'DSA',	'ripemd160',	'sha',	'MD5',	'MD4',	'sha384',	
'sha256',	'sha512',	'RIPEMD160',	'whirlpool'}

Programming Task#1 - Java

Write a complete Java program that uses the above functions to print out the hash value of
simple strings. For example, use the following main() function:

public	static	void	main(String[]	args)	{ 
			String	msg	=	“It	was	the	best	of	times,	it	was	the	worst	of	times.”; 
			String	hashValue	=	hashString(msg,	“MD5”);

			System.out.println(hashValue	+	”			“	+	msg); 
}	//	main()

Observe the output hash value for msg. Compare it with the output of md5sum on
TwoCities.txt.

Programming Task#1 - Python

Write a complete Python program that uses the above functions to print out the hash value of
simple strings. For example, use the following main() fuction: 

def	main(): 
			msg	=	“It	was	the	best	of	times,	it	was	the	worst	of	times.”; 
			hashValue	=	hashString(msg,	“MD5”);

			print(hashValue,	“			”,	msg);

Next, try the same example in the program above to use the SHA256 algorithm (use the string
“SHA-256” in Java and “SHA256” in Python to instantiate the algorithm).

§ Question 4. Is the MD5 digest the same in all three (Unix, Java and Python) cases? If not,
why?

§ Question 5. Is the SHA-256 digest the same in all three cases? If not, why?

Explain (in 1 or 2 sentences). You may provide one explanation for Q4 and Q5.

As you saw above, it is very important, when studying hash function implementations for
comparison purposes that you are providing them exactly the same string/message to hash. Even
a 1-bit change would lead to a completely different outcome. OK, take a well-deserved breather
before proceeding.

6

Hashing Files

So, that was a simplistic way to hash something, namely a short string. Typically, as you have
seen, you hash files. The files may contain data, text, an image, audio, video, etc. And, the files
can be of arbitrary size, even larger than the memory available. To address these, you do two
simple things: (1) No matter what the contents of a file may be, you can just treat them as a very
long sequence of bytes. After all, if it is anything stored on a computer, it must be in bits/bytes.
(2) You write your program to process/hash the file of bytes in manageable chunks. This way
you never have to read an entire file before hashing it. Also, remember that the hashing
algorithm itself breaks down the message into blocks. Luckily, we do not have to match the
chunks of a file to the block size used by the algorithm. All message digest algorithms provide
internal mechanisms to manage this. Hashing a file, therefore, follows the following algorithm:

while	there	are	bytes	in	input	file	to	process 
			read	a	chunk	of	the	input	file	(typically	1024	bytes) 
			supply	the	chunk	to	the	digest	algorithm 
 
hash	code	=	finalize	the	computation	of	digest	and	return	the	hash	code

Java

In Java’s MessageDigest class, there are two sets of functions provided:

void	update(byte[]	input) 
void	update(byte[]	input,	int	offset,	int		length) 
//	Updates	the	digest	using	the	byte	array,	input. 
//	Starting	from	byte[offset],	length	bytes,	if	provided

byte[]	digest() 
byte[]	digest(byte[]	input) 
//	Update	digest	with	supplied	input,	 
//	and	finalize	the	hash	value	computation	(as	a	byte[])

Earlier, in Task#1, we used the digest() method since all we were digesting was a small
string. But, for large files, and files of any content, we use update() to add content to the
digest. Once all content has been updated, we use digest() to finalize the computation of
hash value. Incorporating these ideas, we provide a Java function, hashAFile() that, given a
file and an algorithm, opens the file, instantiates the algorithm, and computes and returns the
hash value for the file:

String	hashAFile(File	filename,	String	algorithm)	{ 
			//	Hash	the	contents	of	the	file,	 
			//	fileName	and	return	its	hash	value	as	a	hex	string. 
 
			byte[]	hashedBytes	=	null;					//	the	result 
			try	{ 
						//	Open	the	file 
						FileInputStream	inStream	=	new	FileInputStream(filename); 

7

						 
						//	Instantiate	a	digest	with	the	algorithm 
						MessageDigest	digest	=	MessageDigest.getInstance(algorithm); 
 
						//	Define	input	file	chunk	buffer	(of	1024	bytes) 
						byte[]	buffer	=	new	byte[1024]; 
						int	bytesRead	=	-1;	//	counts	how	many	bytes	were	read 

						while	((bytesRead	=	inStream.read(buffer))	!=	-1)	{ 
									//	there	are	bytes	in	input	file	to	process 
									//	supply	the	chunk	to	digest 
									digest.update(buffer,	0,	bytesRead);

						} 
 
						//	finalize	computation 
						hashedBytes	=	digest.digest(); 
 
			}	catch	(NoSuchAlgorithmException	|	IOException	e)	{ 
						//	Catches	both:	algorithm	and	file	I/O	exceptions 
						e.printStackTrace(); 
			} 
 
			return	bToH(hashedBytes);	 	 //	Convert	bytes	to	hex	string

}	//	hashAFile() 

Note that you still need to use the function bToH() to convert a bytes array into a printable
hexadecimal string.

Python

def	hashAFile(fileName,	algorithm): 
			“””Hash	the	contents	of	the	file,	filename	using	algorithm, 
						and	return	its	hash	value	as	a	hex	string. 
			“”” 
				digest	=	hashlib.new(algorithm)

				with	open(fileName,	"rb")	as	inStream: 
								#	read	entire	file	into	buffer 
								#	WARNING:	watch	for	HUGE	files! 
								buffer	=	inStream.readline()

								digest.update(buffer)	

				return	digest.hexdigest()

Python - Buffered Read 

For HUGE files, you can read a specific number of bytes from a file, and process sequentially: 

bufferSize	=	1024 
with	open(fileName,	"rb")	as	inStream: 
				buffer	=	inS.read(bufferSize)	 #	read	bufferSize	bytes 
				while	len(buffer): 
								digest.update(buffer)	 #	add	to	digest 

8

								buffer	=	inStream.read(bufferSize) 
return	digest.hexdigest()

Programming Task#2

Write a Python/Java program to compute the hash values for any file. Use the code segments
provided above. Then test your program for the following files:

(1)TwoCities.txt

(2)Anassa.txt

(3)Moby10b.txt

(4)SpongeBob.png

Run your program on all the files, for both MD5 and SHA-1 algorithms. Compare the results
obtained to the ones obtained by md5sum and sha256sum.

§ Question 6. Do the digests match for all the files, and for each algorithm? Explain, briefly,
why it is important that they match.

Why SHA-256?

SHAttered! The first collision attack against SHA-1

On February 23, 2017 Google Inc. and CWI Institute announced that they had generated a
collision. That is, two different messages when hashed with the SHA-1 algorithm, produced the
exact same hash value! In this part of the lab, you will recreate this collision. You will use the
messages provided by Google (see below) and use your program to confirm that the two inputs
do produce a collision. All you have to do is, copy the two files from the address provided and
run your program from Task#2 on them.

File#1: /home/gtowell/Public/337/Lab10/shattered-1.pdf

File#2: /home/gtowell/Public/337/Lab10/shattered-2.pdf

Run these files for MD5, SHA-1 and SHA-256 algorithms (in Java use “SHA256”, in Python,
“sha256”.

§ Question 7. Did your program produce the same hash value for the two files on all three
hashing algorithms? Why does this result point to a problem for sha1?

For more information on this, see https://security.googleblog.com/2017/02/announcing-first-
sha1-collision.html

9

https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

Since the Shattered announcement, there have been further studies and news about the
significance and consequences of using/retiring the use of Sha1 algorithm. Feel free to do do
some research on this matter.

What to hand in:

Answers to the 7 questions posed above. Answers may be independent; That is you do not
need to fold your answers into a cohesive essay. Explanations should be on the order of 1
paragraph

An appendix containing the code you wrote; both Java and Python for Task 1 and either Java or
Python for Task 2.

Rough Rubric:

Use two species of cats as your identity.

Topic Points
Q1 10
Q2 10
Q3 10
Q4 10
Q5 10
Q6 10
Q7 10
Appendix	(Code) 30

10

