
CS 337: Algorithms: Design & Practice
Lab#3: Quicksort vs. Hybrid Quicksort vs. Library sort()
NOTE: All work should be entirely your own. You are not allowed to work with another
person on any aspect of this Lab.

In this lab we will set up an experiment to measure and compare the performance of different
implementations of the Quicksort algorithm: Jon Bentley’s efficient version versus Hybrid
Quicksort (Bentley’s version of Quicksort+Insertion Sort). We will also see how our
implementations compare to the library sort() function in the programming language of your
choice (C, Go, Java, Python).

We will record execution times for sorting an array of integers of size, N ranging from
5,000,000 to 50,000,000 in steps of 5,000,000. This will give us ten data points to plot for each
algorithm. We will experiment the sorting algorithm for average case performance, for non-
repeating elements. Our first task, then, is to write a program that does the following:

Initialize an integer array of N elements so that A[i] = i.

Next, shuffle the array.

You can use the Fisher-Yates Shuffle algorithm:

for i from 0 to n−2 do
 j ← random integer such that i ≤ j < n
 exchange a[i] and a[j]

Task#1: Write a program that implements the above. Test it by printing out the results of
creating and shuffling an array of 20 elements. (Aside, why use this algorithm rather than just
draw that many random numbers as you did last week?)

Task#2: Bentley’s Quicksort Algorithm

Jon Bentley describes the following algorithm for efficiently implementing the Quicksort 1

algorithm:

Given: A an array

 left: an index in the array (left>=0) and left < len(A)

 right: a second index in the array, right is usually greater than left.

Return: nothing. Execution of the the algorithm changes the order of items in A
quicksort(A, left, right) : Sort an array, A from index, left
 up to index, right.
 We will use two variables: i, m
 if (left >= right) return

 // pivot is a random element in A[l]..A[u]
 swap(A[left], A[randomInt(left, right)])
 m = left

 1

 for i from left+1 to i <= right do
 if (A[i] < A[left])
 swap(A[++m], A[i])

 swap(A[left], A[m]) // A is now partitioned at A[m]
 quicksort(A, left, m-1)
 quicksort(A, m+1, right)

Implement the above algorithm and test to ensure it results in a sorted array of size N=20
before proceeding.

Task#3: Insertion Sort

Implement the Insertion Sort algorithm exactly as in Cormen (pg 37). Again, as in Task#2,
ensure that the algorithm is sorting correctly before proceeding.

Task#4: Hybrid Quicksort

Write a hybrid sort function using the following algorithm:
Given: as for quicksort along with

 cutoff: a small positive integer typically between 10 and 100.
hybridSort(A, left, right, cutoff)
 quicksort(A, left, right, cutoff)
 insertionSort(A, left, right)

Use the following modified quicksort() algorithm:

quicksort(A, left, right, cutoff): Sort an array, A from
 index, l up to index, u.
 We will use two variables: i, m
 if (right – left < cutoff) return

 // pivot is a random element in A[l]..A[u]
 swap(A[left], A[randomInt(left, right)])
 m = left
 for i from left+1 to i <= right do
 if (A[i] < A[left])
 swap(A[++m], A[i])

 swap(A[left], A[m]) // A is now partitioned at A[m]
 quicksort(A, left, m-1)
 quicksort(A, m+1, right)

Note that this version of quicksort is exactly equivalent to the previous when cutoff==1. It is
normally a good idea to experiment a little to determine the cutoff value to determine the sweet
spot. Or, you can just use cutoff=25. Once again, test and confirm that the array is being sorted
before proceeding (make sure you use N > 25, say N = 100).

Task#5: What about library sort()?

Learn how to use the library sort() function provided in the language of your choice. Can
you determine, from the documentation, what kind of sorting algorithm it employs? Just as you

 2

tested the two versions of Quicksort above, write a program to use the library sort() to sort.
Make sure it is correct.

NOTE: All work should be entirely your own. You are not allowed to work with another
person on any aspect of this Lab.

Task#6: Performance Measurement

Now that you have two versions of Quicksort implemented correctly, you can time and
measure the runtime for sorting arrays of sizes N=5,000,000 to 50,000,000 in increments of
5,000,000. For each N, try and run it several times to take a consistent runtime representative
of that size. Why? Additionally, also obtain the timings for sorting using the library sort()
function. You can use the table below to record your timings for each algorithm. Or, save the
outputs in a file to load into Excel for plotting purposes.

Task#7: Visualization and Analysis

Plot the data in the table to visually see how each sort function compares.

Extra Credit [Optional]

Below is the dual pivot Quicksort algorithm by Vladimir Yaroslavskiy (Actually this is a slight
simplification of that algorithm, but it still works well). Implement it and include its timing in
the plot above. (Hybrid dual pivot is consistently a little slower that hybrid qSort on my Mac,
but consistently a little quicker on a unix box)

What to hand in:

N

Bentley’s Quicksort
Hybrid Quicksort

Library sort()

5 million

10 million

15 million

20 million

25 million

30 million

35 million

40 million

45 million

50 million

 3

1. A printout of the plot from Task#7.

2. A printout of the table from Task#6 showing all the timings.

3. A technical essay that summarizes the observations you can make about the
comparative performance of the sorting algorithms. Include as an appendix the
implementations of each of your sort algorithms. Note that items 1 and 2 could be
included as figures within your text or as appendices.

Here is the dual pivot algorithm (somewhat adapted and simplified from Yaroslavskiy). You
can find Yaroslavskiy’s Java code on the web. Use this algorithm instead.
Given:
 a: an array
 left: an index in the array
 right: an index in the array (these are exactly as in
qSort)
 cutoff: a small positive integer (1 for standard or 20 for
hybrid, dual-pivot qSort)
Return:
 nothing, the array a is modified in place.

1. if ((right-left) < cutoff), return.

2. if a[right] < a[left] swap right and left

3. let P1=a[left] and P2=a[right].

4. let L=left+1, G=right-1, K=L

5. Imagine that the array has 4 parts

• part I with indices from left+1 to L–1. Contains
which are less than P1 (initially empty),

• part II with indices from L to K–1. Contains elements
which are greater or equal to P1 and less or equal to
P2 (initially empty),

• part III with indices from G+1 to right–1. Contains
elements greater than P2 (initially empty),

• part IV with indices from K to G. Contains those
elements that have not yet been placed in parts I, II
or III. (initially contains everything other than P
and P2. Empty at the conclusion of the step 6 loop).

6. While K ≤ G.

1. The next element a[K] from the part IV is compared
with two pivots P1 and P2, and placed to the
corresponding part I, II, or III.

 4

2. The pointers L, K, and G are changed in the
corresponding directions in accordance with the
placement.

7. The pivot element P1 is swapped with the last element from
part I, the pivot element P2 is swapped with the first
element from part III.

8. Recur on each of parts I, II and III.

 The Most Beautiful Code I never Wrote, Jon Bentley. In Beauitful Code: Leading Programmers Explain How 1

They Think, Edited by Andy Oram & Greg Wilson, O’Reilly Publishers, 2007.

 5

