
CS 330: Algorithms: Design & Practice
Lab#2: Linear Search: Performance Comparison

Chapter 2 of Cormen describes four algorithms for Linear Search as follows:

Version 1: From page 13.

procedure linearSearch(A, n, x)

Inputs:

• A: An array (indexed from 0 onwards)

• n: the number of elements in A to search through

• x: the value being searched for.

Outputs: Either an index i for which A[i] = x, or a special
value, -1

1. Set answer to -1.

2. For each index i=0 to n-1:

a. If A[i] = x then set answer to i.

3. Return the value of answer

Version 2: From page 14 (Better Linear Search)

procedure betterLinearSearch(A, n, x)

Inputs & Outputs: Same as Version 1

1. For each index i=0 to n-1:

a. If A[i] = x then return value of i.

2. Return -1

Version 3: From page 16: Sentinel Linear Search

procedure SentinelLinearSearch(A, n, x)

Inputs & Outputs: Same as Version 1

1. Last ← A[n-1]

2. A[n-1] ← x.

3. Set i ← 0.

4. While A[i] ≠ x:

a. Increment i by 1

5. A[n-1] ← Last
6. If i < n-1 or A[n-1] = x then return value of i.
7. Otherwise return -1

Version 4: From page 24: Recursive Linear Search

procedure RecursiveLinearSearch(A, n, i, x)

 1

Inputs: Same as Version 1 with an added parameter, i.
Outputs: The index of an element equaling x in the subarray
from A[i] through A[n-1], or -1 if not found.

1. If i ≥ n then return -1.

2. Otherwise (i < n),
if A[i] = x then return i.

3. Otherwise (i < n and A[i] ≠ x),
return RecursiveLinearSearch(A, n, i+1, x).

Task#1: Implement each of the above algorithms in a programming language of your
chosing (C, Java, Go, or Python). Write a program that uses each of these using the
following algorithm:

procedure main()

Inputs: None.
Outputs: For each search algorithm, it reports the following:

Searching array of size: N
Algorithm: linearSearch
Looking for element: x
Result: -1 or i

Algorithm: betterLinearSearch
Looking for element: x
Result: -1 or i

etc.

1. Initialize an array, A of integers of size 10 such that
A[i] ← i.

2. Search for element, 7 in A using each of the four searches.
It should report a result 7.

3. Search for element, 10 in A using each of the four
searches. It should report a result -1.

Implement and test each search function one at a time. Once you have confirmed that each
of your functions is working correctly proceed to the next task.

Task#2: Next, we want to compare the run time of each of these functions in the best, worst,
and average cases. In order to do this, first modify the program from Task#1 to the
following:

1. Initialize an array, A of integers of size 50,000,000 such
that A[i] = a random number between 0 and 50million.

2. Best case: Search for element at A[0] in A using each of
the four searches.

 2

3. Average case: Search for a random number in A using each of
the four searches. The range of random numbers you search
for should be bigger than 50million (so that some searches
will fail).

4. Worst case: Search for element, -10 in A using each of the
four searches. It should report a result -1.

If you are writing in Python, you may want to use a number less than 50,000,000. (Why?)

Ensure that the programs are working correctly and that the programs exactly follow the
above algorithms. Then insert timing commands to determine the execution time for each
search. Run the program several times so as to get a good data set that will allow you to
analyze and compare the performance of the searches against each other.

Note that Algorithm 4 may run into issues If it does, be sure you understand these issues
and describe the issues and causes in your report. Are the issues consistent? (Be sure to
precisely define “consistent”.)

Extra Credit: (1) Implement the entire program in another programming language. Based
on the performance data what conclusion(s) can you draw about the comparative speed of
running programs in the different languages; (2) Run Version 2 to time it for worst case for
A of sizes 1 million up to 50 million (in increments of 1 million) and draw a performance
plot. (3) Determine how many searches (average case) in 1 second?

Further Extra Credit: The recursive search algorithm is tail recursive. None of the Java,
Go or Python implement tail call optimization. So, first, find a procedural language that
implements tail call optimization (this excludes Elixir). Implement recursive search in that
language and explore the benefit of tail call optimization. For instance, does it make the
speed equivalent to Algorithm 2?. While you are at it, merge in the ideas of sentinel linear
search to recursive search.

Task#3: The Report

Write a formal report that uses the data obtained to compare the performance of the four
searches. Rank the searches, based on your data from most efficient to least efficient, by run
time. Does the performance match the expected efficiency as discussed in the text?

The format for the report should be at most 5-pages using the formatting discussed in class
on Jan 26. In your report, clearly outline the purpose of the study, the methodology
employed and a detailed presentation and analysis of the data obtained. End the report by
summarizing your findings. Include a listing of all programs in the Appendix of the report.

What to hand in: A report as described above.

Helpful Notes
Generating a random number

In C, stdlib has the function rand() defined as follows:

 3

int rand() – returns a random number between 0 and RAND_MAX
 RAND_MAX is defined in stdlib

In Java, you can use the Random class from java.util as follows:

import java.util.Random;
…
Random rand = new Random(); // Create a generator
…
int x = rand.nextInt(10); // Generates a random number
 // between [0..10)

In Python, the random module has the following function:
x = random.randrange(10) // generates a random number

// between [0..10)

In Go:

 import “math/rand”
x = rand.Intn(10)

You can look up the language references for details on these and other ways of generating
random numbers.

Timing pieces of code in C

#include<time.h>
…
long start = clock();
…code to be timed inserted here…
double duration = (clock() – start) / CLOCKS_PRE_SEC;
 // duration is in seconds

See the lecture notes from last Thursday for timing in Python, Go and Java.

You can look up the language references for details on these and other ways of timing lines
of code.

 4

