
CMSC 330 Algorithms: Design & Practice
Week of March 16: Problems, Solutions, Algorithms, Programs
Submission due on March 25th by 5p (Eastern Time)

This week’s exercise is designed to get you out of the COVID-19 mode and think about computational
problems, solutions, algorithms, and programs. At least for just a little bit. It will also serve as review of
some of the fundamental ideas of computing that we have so far learned in this course. It is a simple
exercise and will require you to have the following: pen/pencil, paper, a calculator, and access to a
computer for writing programs in Python and Java. The program(s) will be no longer than a couple dozen
lines of code. I promise. Ready?

Say we want to compute the square root of the number 2 (i.e. √2). This is essentially a numerical
calculation task. While there are many methods for calculating the square root of a number1, we will use
one commonly called the Babylonian Method (circa 1000 BCE). It is also sometimes referred to as
Heron’s Method which dates back to AD 60.

To compute the square root 𝑥𝑥 = √𝑎𝑎 do the following:

1. Start with some guess 𝑥𝑥1 > 0
2. Compute a sequence of guesses 𝑥𝑥1,𝑥𝑥2, …, 𝑥𝑥𝑛𝑛 using the equation:

𝑥𝑥𝑛𝑛+1 =
1
2

(𝑥𝑥𝑛𝑛 +
𝑎𝑎
𝑥𝑥𝑛𝑛

)

until the numbers produced converge.

Do This: Put down this book and get a piece of scratch paper and pencil/pen. And, a calculator. You will
need one. Compute the square root of 2 (i.e. √2) using the above formula. Start with 𝑥𝑥1 = 1. Next,
write down your answer for values of 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, etc. I’ll get you started. You fill out the remaining values
(you might need more values than shown below, continue until numbers converge):

𝑥𝑥1 = 1
𝑥𝑥2 = 1.5
𝑥𝑥3 = 1.416666667

𝑥𝑥4 = ____________________

𝑥𝑥5 = ____________________

𝑥𝑥6 = ____________________

𝑥𝑥7 = ____________________

𝑥𝑥8 = ____________________

𝑥𝑥9 = ____________________

𝑥𝑥10 = ____________________

𝑥𝑥11 = ____________________

Computed value of √2 is: ____________________

Were you also able to compute √2 correctly?

1 Look up the Wikipedia page for computing square roots. You will find many different ways, including the
Babylonian/Heron method we use in this exercise.

On my calculator, I needed seven steps to get √2 = 1.414213562. I was able to get values with a
precision of 9-digits after the decimal. Yours may be different in the number of digits of accuracy. I
stopped after the same value was produced twice in a row. That is, the sequence converged.

Well, congratulations! You were just a computer. And you did some computing!

The very small set of computations you did above even with the help of a calculator was a somewhat
tedious exercise. Right? I agree. But, this is where computers come in. What you have seen so far is a
concrete example of a problem: compute the square root of a number; and a possible solution: how to
compute it.

What is programming?
Programming is how you tell a computer what to do. It is similar to how I told you above about how to
go about computing the square root of a number. Try telling a friend and see how it goes. While you
would not want to then say that you programmed your friend to compute square roots, when you do
this to a computer, you are programming the computer.

To illustrate another important point, let us repeat the set of instructions to compute the square roots:

To compute the square roots 𝑥𝑥 = √𝑎𝑎 do the following:

1. Start with some guess 𝑥𝑥1 > 0
2. Compute a sequence of guesses 𝑥𝑥1,𝑥𝑥2, …, 𝑥𝑥𝑛𝑛 using the equation:

𝑥𝑥𝑛𝑛+1 =
1
2

(𝑥𝑥𝑛𝑛 +
𝑎𝑎
𝑥𝑥𝑛𝑛

)

until the numbers produced converge.

While these were sufficient for us to follow and compute square roots, for a computer there are still
many vagaries in the set of instructions above: What is “some guess”? what does it mean to say “until
numbers converge”?

Let us try and eliminate these vagaries. First, look at step 1:

Start with some guess 𝑥𝑥1 > 0

How do we know what to start with? It is a guess after all and as long as it is greater than zero, the
method works. So, you could start with 1 (as we did earlier), or you could start with another number,
say 10, or 100, etc. No matter where you start you will be able to converge to the correct square root of
desired accuracy. Try computing √2 starting with 𝑥𝑥1 = 5. In a few steps you will arrive at the correct
value of √2 . It will just take a few more repetitions of step 2 for it to converge. And, that brings us to
the second vagary in Step 2:

until the numbers converge

Let us, for now, assume that a sequence of numbers converges whenever adjacent numbers are the
same to a desired accuracy. If you only desired an accuracy of 3-digits, say to compute √2 , starting with
the first guess as 1. You will see convergence after five steps: 1, 1.5, 1.416, 1.41467, 1.41422. To get an
accuracy of 16-digits you will need more steps:

1
1.5
1.4166666666666665

1.4142156862745097
1.4142135623746899
1.414213562373095
1.414213562373095

It took seven steps. Essentially, the number of steps it will take to converge depends on how “bad” the
initial guess is and how much accuracy you desire. Here, “bad” means how far away the first guess is
from the actual square root. Say you started with 1.4 as your initial guess. The sequence of numbers will
converge after only four steps. Try it.

What is an algorithm?
One more time. Back to our example of computing square roots. In order to express the steps in a
formal manner, we have to be more precise. This is where algorithms come in. For now, let us describe
an algorithm as a set of instructions with some specific properties: they are precise and unambiguous
(i.e. no vagaries). Here is a more precise and unambiguous set of instructions:

Algorithm: How to compute √𝒂𝒂.

1. To compute √𝑎𝑎.
2. Start with 𝑥𝑥𝑖𝑖 = 1. This is our initial guess.
3. Compute the next guess:

𝑥𝑥𝑖𝑖+1 =
1
2

(𝑥𝑥𝑖𝑖 +
𝑎𝑎
𝑥𝑥𝑖𝑖

)

4. If 𝑥𝑥𝑖𝑖+1 ≠ 𝑥𝑥𝑖𝑖
 set 𝑥𝑥𝑖𝑖 to be same as 𝑥𝑥𝑖𝑖+1.
 And then repeat from Step 3.
Otherwise because 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖, they have converged. Therefore, √𝑎𝑎 = 𝑥𝑥𝑖𝑖+1.

Computer scientists will recognize the above as an algorithm for computing √𝑎𝑎. It is precise,
unambiguous, and effective. An algorithm is effective if its steps can be followed to produce an answer.

Algorithm: A Definition
An algorithm is a precise, unambiguous, effective set of instructions on how to solve a problem.

From Algorithm to Program
Now that we have an algorithm, we can think about programming languages and programs. Programs
are essentially algorithms expressed in a programming language. This is where you come in.

TASK: Express the algorithm described above in Python/Java/C so that you can compute the square root
of any positive number on a computer. Write a function sqRoot() that uses the algorithm above and
then use it as shown below:

for n ← 1 to 10 do
 print the value of n, and sqRoot(n)

Implement a complete program to do this.

WHAT TO SUBMIT
In PDF format, a print out of your program and its output as required above. For extra credit, write the
program in another programming language of your choosing.

WEEKLY JOURNAL: Don’t forget to write your journal entry for this week.
This week’s topic: Algorithms in my life

	What is programming?
	What is an algorithm?
	From Algorithm to Program

