Directed Acyclic Graphs and
Topological sort

What is a DAG?

Directed Acyclic Graph
Vertices and directed edges

Acyclic - there is no way for a vertex to cycle
back to itself

Starting point is vertex with no entering edges

Transitive - must be put before constraint
Vertices
Directed Edges

Directed Graphs

In-degree number of edges entering a vertex

Usage and Applications

Usage: Task based procedures that can only be done once and have multiple
possible starting points potentially

Applications: Recipes, arithmetic operations, revision control

Algorithm Topological Sorting

Single linear order of performing
a task

No circular dependencies

Assign numbers to vertices

Uses a stack
O(n+m) worst case
n is all vertices

m is all edges

Procedure TOPOLOGICAL-SORT(G)
Input: G: a directed acyclic graph with vertices numbered 1 to n.

Output: A linear order of the vertices such that u appears before v in
the linear order if (u, v) is an edge in the graph.
. Let in-degree[1 . .n] be a new array, and create an empty linear
order of vertices.
. Set all values in in-degree to 0.
. For each vertex u:
A. For each vertex v adjacent to u:
i. Increment in-degree|v].
. Make a list next consisting of all vertices u such that
in-degree[u] = 0.
. While next is not empty, do the following:
A. Delete a vertex from next, and call it vertex u.

B. Add u to the end of the linear order.
C. For each vertex v adjacent to u:

i. Decrement in-degree(v).
ii. If in-degree[v] = 0, then insert v into the next list.

. Return the linear order.

PERT Chart

“Program Evaluation and Review

Technique”

DAG with time corresponding to tasks @;:fm)_(ﬁ;

3 2
celery) Ginse peanuts

Critical Path: The most efficient amount of

time to complete a task given unlimited
resources or the minimum sum of time to
complete a task

Algorithm Relax

Procedure RELAX(u, v)

Relaxation ste PS Inputs: u, v: vertices such that there is an edge (u, v).
Result: The value of shortest[v] might decrease, and if it does, then
pred|[v] becomes u.

Used in DAG shortest pathS 1. If shortest[u] + weight(u,v) < shortest[v], then set shortest[v] to

shortest|u] + weight(u. v) and set pred|[v] to u.

.

2 (socks) (compression shorts) 3

Adjacency Matrix

Each row and column correspond
to a vertex

Adjacency List representation is
an ordered list of the matrix

Adjacency matrix
7

o
©
=
[
=
.
E S

Fill with 1 if in Adjacency list and
fill with O if not

E=l- e = R A L

Rows correspond to vertexes

COO0COCOOOCOOO O —~0O Olwv
COO0COCOO0CO=~00C OO0 O|®
(= — I — I — I — I — B — Y — I — I — I — I —)
OO0 ~0 000000 OO Q
CO =00 O0O=0 00 000 O
= 00000000 OO0 QL

CO0O0O0O0CO0OC OO0 O~
SR N N - RN [N
CO0O0OO0OOCOO000 000 =W
CO0O00O0O0O0O00O0 ~=0O|a
OO0 O0O0O0O0OO~ =000
CO0OOO0OCOO =000 O
CO00O0O0O0O0O0OCOOCQ
SO0 O0O~0O0O0~00O000
o =m0 ® W W —

Columns correspond to options of
vertices to move to

Algorithm DAG Shortest Path

Source Vertex
Target Vertex

Single source shortest paths

Procedure DAG-SHORTEST-PATHS (G, 5)

Inputs:

* G: aweighted directed acyclic graph containing a set V of n
vertices and a set E of m directed edges.

* s: asource vertex in V.

Result: For each non-source vertex v in V', shortest[v] is the weight
sp(s, v) of a shortest path from s to v and pred|[v] is the vertex
preceding v on some shortest path. For the source vertex s,
shortest[s] = 0 and pred|[s] = NULL. If there is no path from s to v,
then shortest[v] = oc and pred|[v] = NULL.

. Call TOPOLOGICAL-SORT(G) and set [to be the linear order of
vertices returned by the call.

. Set shortest|v] to oo for each vertex v except s, set shortest|s)
to 0, and set pred[v] to NULL for each vertex v.

. For each vertex u, taken in the order given by /:

A. For each vertex v adjacent to u:
i. Call RELAX(u. v).

DAG Shortest Path Example

(ﬁmsh cookmg chlcken)

remove chncken

—-t(cook carrots, celery peanuls)

add back chicken
-1

add cooking sauce)
3

(cook sauce until thick)
-1

(remove completed dish)
0

Sources

Corman Algorithms Unlocked Boston: MIT Press Books, 2013.

Thank you!

