Counting Sort

Rachel Xu
03/31/2016



Comparison Sorts

® Ex: insertion sort, merge sort...

® Allinputitems are black boxes

® The sorted order is based only on comparisons
®

Worse-case number of comparisons: Q) (nlgn)



Counting Sort

Linear-time sort
Use actual values of input elements for indexing

Input: an array of n integers in range(0, k)

Need to create:
An array of length k+1to store the counts of each integers

An array of length n to store the output



Steps of the Algorithm
Input Array: A[1...n]

1. Use an array of length k to store the counts for all unique
integers in A

2. Modify the count array such that the element at each index
stores the sum of previous counts

3. lterate over A and output each integer to its corresponding
position in the output array



Java Gode

public static void sort(int[] a, int k) {
int N = a.length;
int[] counts = new int[k];
int[] output = new int[N];

©(n)

for (int i = @: i < N: i++) {
counts[a[i] ]++;

1 oK)

for (int i = 1; i < counts.length; i++) { — O(k+n)
counts[i] += counts[i-1];

}

for (int 1 =N - 1; i >= 0; i—) {
output [counts[a[i]]-1] = alil; —
counts[al[i]1—;

} O(n)

for (int 1 = @; i < N; i++) { —
alil = outputl[il];

}



Time Gomplexity

1. Storing counts: © (n)
2. Modifying count array: © (k)
3. Output integers to output array: © (n)

Overall: © (k + n)

In practice: k = O (n), running times becomes © (n)



A Gouple of Remarks

Counting sort is stable: if two elements A[i] and A[j] have the same key
value and i <j, Ali] will appear before A[j] in the output

o Ex:input[l, 2, 3a, 4, 5, 3b] gives output [1, 2, 3a, 3b, 4, 5]

If instead of going from N - 110 O (as below), i goes from O to N -1, the

sort is not stable for (int i =N -1; i>=0; i—) {
output [counts[a[il]l-1] = alil;
counts[al[il]—;

}
Counting sort can be very efficient if k is much smaller than N



THANKS =D



