
Bellman-Ford Algorithm
Clare Allsopp-Shiner

Ziting Shen

Bellman-Ford algorithm?
● Pathfinding algorithm.

● Can process graphs with negative edge weights.

● Finds shortest distance for all vertices.

● Calculates from all outgoing vertices, replacing values when a shorter
path is found, with number of vertices, n - 1 iterations.

Example;
Starting at node S

Number of nodes is 8,
Number of iterations is 7

● If node not reachable,
value listed as infinite

.

● Value at S always zero.

● Values of shorter paths
replace values of longer
paths when found

function BellmanFord(list vertices, list edges, vertex source)
 // Step 1: initialize data structures
 for each vertex v in vertices:
 distance[v] := infinite
 predecessor[v] := null

 distance[source] := 0

 // Step 2: relax edges repeatedly
 for i from 1 to size(vertices)-1:
 for each edge (u, v) with weight w in edges:
 if distance[u] + w < distance[v]:
 distance[v] := distance[u] + w
 predecessor[v] := u

 // Step 3: check negative-weight cycles
 for each edge (u, v) with weight w in edges:
 if distance[u] + w < distance[v]:
 error "negative-weight cycle"
 return distance[], predecessor[]

Pseudocode

Negative Cycles

the sum of edge weights around the cycle is negative →

 ∄a shortest path from the source to some vertices

Proof of Correctness
Lemma. After i repetitions of relaxation:

● Distance(u) ≠ infinity → Distance(u) = the length of some path from s to u

● ∃ path from s to u with at most i edges → Distance(u) ≤ the length of the
shortest path from s to u with at most i edges

Proof by induction:

Base case: i = 0

Induction: i = n → i = n+1

Negative Weights? *that’s when you want to use Bellman-Ford rather than Dijkstra...

1. Chemistry: heat produced in chemical reactions

2. Transactions: get and lose money

3. Longest path from a single source vertex in acyclic graphs:

● Turn all edge weights to be negative

● Run Bellman-Ford algorithm

4. Longest path w/o repeated edges from a single source vertex in cyclic

graphs?? Brute Force!!

Time Complexity
Bellman-Ford: O(VE) → O(V2 log V)

Dijkstra: O(V2) (w/ list) → O((E + V) log V) (w/ binary heap)

 → O(E + V log V) (w/ Fibonacci heap)

 → O(E log log L) (w/ Fibonacci heap)

