
1/28/16	

1	

+

Describing and
Evaluating Algorithms

+
Computer programs
n  procedures

n  called

n  with parameters (inputs)

n  return a value (output)

n  array
n  aggregate of data of the same type in one entity

n  each entry

n  has an index (indices start at 1)

n  has an element (value)

n  square brackets [] indicate the index of an array

n  for instance the i-th element of array A is written A[i]

+
Example Procedure
Linear Search

Procedure Linear-Search(A,n,x)
Inputs:
n  A: an array
n  n: the number of elements in A to search through
n  x: the value being searched for
Output: Either an index I for which A[i] = x, or the special value
NOT-FOUND, which could be any invalid index into the array,
such as 0 or any negative integer.
1.  Set answer to NOT-FOUND.
2.  For each index i, going from 1 to n, in order:

A.  If A[i] = x, then set answer to the value of i.
3.  Return the value of answer as the output.

+
Example Procedure
Better Linear Search

Procedure Better-Linear-Search(A,n,x)
Inputs:
n  A: an array
n  n: the number of elements in A to search through
n  x: the value being searched for
Output: Either an index I for which A[i] = x, or the special value
NOT-FOUND, which could be any invalid index into the array,
such as 0 or any negative integer.
1.  For each index i, going from 1 to n, in order:

A.  If A[i] = x, then return the value of i as output.
2.  Return NOT-FOUND as the output.

+
Example Procedure
Better Linear Search

Procedure Better-Linear-Search(A,n,x)
Inputs:
n  A: an array
n  n: the number of elements in A to search through
n  x: the value being searched for
Output: Either an index I for which A[i] = x, or the special value
NOT-FOUND, which could be any invalid index into the array,
such as 0 or any negative integer.
1.  For each index i, going from 1 to n, in order:

A.  If A[i] = x, then return the value of i as output.
2.  Return NOT-FOUND as the output.

Can we do better? How?

+
How can we do better?

n  Notice
n  we do 2 comparisons every time

n  Question
n  can we do just one comparison each time?

1/28/16	

2	

+
How can we do better?

n  Notice
n  we do 2 comparisons every time

n  Question
n  can we do just one comparison each time?

n  Insight
n  we know it stops if it's the item is in the array

+
How can we do better?

n  Notice
n  we do 2 comparisons every time

n  Question
n  can we do just one comparison each time?

n  Insight
n  we know it stops if it's the item is in the array

n  Answer
n  replace the last value with a sentinel

+
Sentinel? Huh?

n  A sentinel is the value that will stop a while loop, but is not
the 'true' item searched for.

n  Let's say you have X = "ABCDE" and you are searching for 'G'
n  set last to 'E' set X[n-1] to 'G'

n  resulting in X = "ABCDG" and last = 'E'

n  Now you know that you will find 'G'

n  but you still have to do at least one additional test.

+
Example Procedure
Sentinel Linear Search

Procedure Sentinel-Linear-Search(A,n,x)
Inputs and Output: Same as Linear-Search
1.  Save A[n] into last and then put x into A[i].
2.  Set i to 1.
3.  While A[i] = x, do the following

A.  Incement i .
4.  Restore A[n] from last .
5.  If i < n or A[i] = x, then return the value of i as the output.
6.  Otherwise, return NOT-FOUND as the output.

+
Analyzing time complexity

n  Theta notation

n  Big O notation

n  little o notation

+
Showing correctness
n  Using Loop invariants

n  Initialization – invariant is true before first iteration

n  Maintenance – as long as it is true before the first iteration, the
invariant is also true before the next iteratoin

n  Termination – the loop ends, and when it does, the loop invariant
along with the reason that the loop terminated, gives us a useful
property

n  Using Recursion
n  Induction

n  prove true for base case(s)

n  assuming true for n(or n-1), prove true for n+1(or n)

1/28/16	

3	

+

