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Describing and 
Evaluating Algorithms 

+
Computer programs 
n  procedures 

n  called 

n  with parameters (inputs) 

n  return a value (output) 

n  array 
n  aggregate of data of the same type in one entity 

n  each entry  

n  has an index (indices start at 1) 

n  has an element (value) 

n  square brackets [] indicate the index of an array 

n  for instance the i-th element of array A is written A[i] 

+
Example Procedure 
Linear Search 

Procedure Linear-Search(A,n,x) 
Inputs: 
n  A: an array 
n  n: the number of elements in A to search through 
n  x: the value being searched for 
Output: Either an index I for which A[i] = x, or the special value 
NOT-FOUND, which could be any invalid index into the array, 
such as 0 or any negative integer. 
1.  Set answer to NOT-FOUND. 
2.  For each index i, going from 1 to n, in order: 

A.  If A[i] = x, then set answer to the value of i. 
3.  Return the value of answer as the output. 

+
Example Procedure 
Better Linear Search 

Procedure Better-Linear-Search(A,n,x) 
Inputs: 
n  A: an array 
n  n: the number of elements in A to search through 
n  x: the value being searched for 
Output: Either an index I for which A[i] = x, or the special value 
NOT-FOUND, which could be any invalid index into the array, 
such as 0 or any negative integer. 
1.  For each index i, going from 1 to n, in order: 

A.  If A[i] = x, then return the value of i as output. 
2.  Return NOT-FOUND as the output. 

+
Example Procedure 
Better Linear Search 

Procedure Better-Linear-Search(A,n,x) 
Inputs: 
n  A: an array 
n  n: the number of elements in A to search through 
n  x: the value being searched for 
Output: Either an index I for which A[i] = x, or the special value 
NOT-FOUND, which could be any invalid index into the array, 
such as 0 or any negative integer. 
1.  For each index i, going from 1 to n, in order: 

A.  If A[i] = x, then return the value of i as output. 
2.  Return NOT-FOUND as the output. 

Can we do better? How? 

+
How can we do better? 

n  Notice 
n  we do 2 comparisons every time 

n  Question 
n  can we do just one comparison each time? 



1/28/16	
  

2	
  

+
How can we do better? 

n  Notice 
n  we do 2 comparisons every time 

n  Question 
n  can we do just one comparison each time? 

n  Insight 
n  we know it stops if it's the item is in the array 

+
How can we do better? 

n  Notice 
n  we do 2 comparisons every time 

n  Question 
n  can we do just one comparison each time? 

n  Insight 
n  we know it stops if it's the item is in the array 

n  Answer 
n  replace the last value with a sentinel 

+
Sentinel? Huh? 

n  A sentinel is the value that will stop a while loop, but is not 
the 'true' item searched for. 

n  Let's say you have X =  "ABCDE" and you are searching for 'G' 
n  set last to 'E' set X[n-1] to 'G' 

n  resulting in X = "ABCDG" and last = 'E' 

n  Now you know that you will find 'G' 

n  but you still have to do at least one additional test. 

+
Example Procedure 
Sentinel Linear Search 

Procedure Sentinel-Linear-Search(A,n,x) 
Inputs and Output: Same as Linear-Search 
1.  Save A[n] into last and then put x into A[i]. 
2.  Set i to 1. 
3.  While A[i] = x, do the following 

A.  Incement i . 
4.  Restore A[n] from last . 
5.  If i < n or A[i] = x, then return the value of i as the output. 
6.  Otherwise, return NOT-FOUND as the output. 

+
Analyzing time complexity 

n  Theta notation 

n  Big O notation 

n  little o notation 

+
Showing correctness 
n  Using Loop invariants 

n  Initialization – invariant is true before first iteration 

n  Maintenance – as long as it is true before the first iteration, the 
invariant is also true before the next iteratoin 

n  Termination – the loop ends, and when it does, the loop invariant 
along with the reason that the loop terminated, gives us a useful 
property 

n  Using Recursion 
n  Induction 

n  prove true for base case(s) 

n  assuming true for n(or n-1), prove true for n+1(or n) 
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