CMSC 325
Computational Linguistics

Fall 2018
Deepak Kumar

Administrivia

- **CMSC325** Computational Linguistics (see course web page)
- **Instructor:** Deepak Kumar (dkumar@cs.brynmawr.edu)
- **Lectures:** MW 10:10 to 11:30a
- **Weekly Lab (optional):** F 10:10 to 11:30a
- **Text:** *Speech and Language Processing, 2nd Edition*
 Daniel Jurafsky & James Martin

 Natural Language processing with Python – Analyzing Text with the Natural Language Toolkit (NLTK)
 Steven Bird, Ewan Klein, and Edward Loper.
- **Software:** Python 3.0 + NLTK
Computational Linguistics

• Study what goes into getting computers to perform useful and interesting tasks involving human languages

• Also concerned with the insights that such computational work gives us into human processing of language

Why care?

• Enormous amount of knowledge is now available in machine readable form as natural language text.

• Conversational agents are becoming common: Siri, Google Voice, Alexa, etc.

• Much of human communication is now mediated by computers.
Some Common Applications

- Google Search
- Machine Translation
 - Google Translate
 - Phone apps – iTranslate (Demo)
 - Real-time language/voice translation (Demo)
- Q & A
- Web Analytics
 Data mining of blogs, discussion forums, message boards, user groups, social media, etc. for...
 - Product marketing information
 - Political opinion tracking
 - Social network analysis
 - Buzz analysis
 - Etc.

Google Translate: Buying Lentils in Italy!
Ricetta Tipica

Ingredienti per 4 persone:
400 g. di lenticchie, 1 litro d'acqua, 1 spicchio d'aglio, 1 gambo di sedano, sale e pepe. Versare le lenticchie su un tegame possibilmente di coccio, aggiungere l'acqua, l'aglio e il sedano: far cuocere per 20-30 minuti circa. A cottura quasi ultimata aggiungere sale e olio crudo. Servire con pane tostato e olio.

Importante la lenticchia non va tenuta a bagno. Si consiglia la pulitura a "dito".

Prodotta e Confezionata dall’Azienda Agricola
SALVATORI REGINA
Viale XX Settembre, 29
06046 Norcia (PG)
0743.816523

Da consumarsi preferibilmente entro 2 anni.
Some Common Applications

• Google Search
• Machine Translation
 • Google Translate (Demo)
 • Phone apps – iTranslate (Demo – Deepak’s phone)
 • Real-time language/voice translation – Microsoft Research English to Chinese (Demo start at 5:25)

• Q & A (IBM Watson Jeopardy!, 2011) – Demo (https://www.youtube.com/watch?v=P18EdAKuC1U)

• Web Analytics
 Data mining of blogs, discussion forums, message boards, user groups, social media, etc. for...
 • Product marketing information
 • Political opinion tracking
 • Social network analysis
 • Buzz analysis
 • Etc.
Topics

• Words
• Syntax
• Meaning
• Discourse
Topics

• Words
• Syntax
• Meaning
• Discourse

Applications exploiting each

Applications – Language Processing versus Data Processing?

• An application that requires the use of knowledge about human languages

Example: Is Linux/Unix wc (word count) an example of a language processing application?
Applications – Language Processing versus Data Processing?

• An application that requires the use of knowledge about human languages

Example: Is Linux/Unix `wc` (word count) an example of a language processing application?
 • When it counts words:
 • When it counts lines and bytes:

Applications – Language Processing versus Data Processing?

• An application that requires the use of knowledge about human languages

Example: Is Linux/Unix `wc` (word count) an example of a language processing application?
 • When it counts words: Yes
 • To count words you need to know what a word is.
 That is knowledge of language.
 • When it counts lines and bytes: No
 • Lines and bytes are computer artifacts, not linguistic entities.
Some big applications requiring knowledge of language

• Question answering

• Conversation agents

• Summarization

• Machine Translation

These require a tremendous amount of knowledge of language.

Example

• Siri:

 What is the population of Bryn Mawr?

 What should I eat today?

 Tell me a joke.
What knowledge is needed?

• Speech recognition & synthesis
 Knowledge of English words (e.g. what they mean, ...)

• How groups of words “clump”
 • What the clumps mean?

Course Content

• Linguistic topics
 • Phonology, morphology, syntax, discourse structure

• Formal Systems
 • Regular languages, context-free grammars, logic

• Applications
The Pipeline

- Phonology
- Morphology
- Syntax
- Semantics
- Pragmatics
- Discourse

Ambiguity

- Computational Linguists are obsessed with ambiguity
- It is a fundamental problem of computational linguistics
- Resolving ambiguity is a crucial goal
Ambiguity

• Find at least five meanings of this sentence:

I made her duck.

• I cooked duck for her (to eat)
• I cooked the duck she owned
• I created the (plaster?) duck she owns
• I caused her to quickly lower her head or body
• I waved my magic wand and turned her into a duck
• ...
Ambiguity is Pervasive

I made her duck.

• I caused her to quickly lower her head or body
 • **Lexical category**: “duck” can be a N or V
• I cooked the duck she owned
 • **Lexical category**: “her” can be a possessive (“of her”) or a dative (“for her”)
• I created the (plaster?) duck she owns
 • **Lexical semantics**: “make” can mean “create” or “cook”

Ambiguity is Pervasive

• **Phonology**
 • I mate or duck
 • I’m eight or duck
 • Eye maid; her duck
 • Aye mate, her duck
 • I maid her duck
 • I’maid her duck
 • I mate her duck
 • I’m ate her duck
 • I’m ate or duck
 • I mate or duck
Dealing with ambiguity

• **Tightly coupled** interaction among processing levels; Knowledge from other levels can help resolve ambiguity.

• Ignore ambiguity as it occurs and hope that other levels can help resolve it – **Pipeline processing**

• Make the most likely choices – **probabilistic approaches**

• Don’t do anything, maybe it won’t matter

Models & Algorithms

• **Models** – formalisms that are used to capture the various kinds of linguistic knowledge that we need.

 State machines, Rule-based approaches, Logical formalisms, Probabilistic models, etc.

• **Algorithms** – used to manipulate the knowledge representations

 Transducers/filters, state-space search, dynamic programming, classifiers, etc.
The Pipeline

- Phonology
- Morphology
- Syntax
- Semantics
- Pragmatics
- Discourse

References