
CS312

OpenGL
Lights and Materials

Light and Matter
  From a physical perspective, a surface

can either
  emit light by self-emission (as a light bulb)
  reflect light from other sources that illuminate

it.

Interaction Between Light and
Surfaces

  (a) specular
  (b) diffuse
  (c) translucent

Light Sources

  Light can leave a surface through
  self-emission and reflection.

  What specifies a light source
  position
  direction
  intensity

Color Sources
  Not only do light sources emit different

amounts of light at different
frequencies, but also their directional
properties vary with frequency.

  Our visual system is based upon three
primaries
  For most applications, it is sufficient to

reduce each light to a 3-component
frequency:

Ambient Lights
  Lights that are designed and positioned to

provide uniform illumination throughout the
room (kitchens, classrooms).

  Achieved with light sources that have
diffusers whose purpose is to scatter light in
all directions.
  Florescent lights have covers designed to do this.

  To the lit surface, ambient light has no
apparent direction.

Point Sources (Diffuse)
  An ideal point source emits light equally in all

directions.
  To the lit surface, diffuse light is directional.
  The intensity of illumination proportional to

the distance, and also depends on the angle
of impact.

Spotlights
  Spotlights are characterized by a

narrow range of angles through which
light is emitted.
  A spotlight can be constructed from a

point source by limiting the angles

Distant Light Sources

  If the light source is far from the
surface, the direction of light is uniform
across the entire surface (the sun).

Parallel Light Rays

  Equivalent to a source that illuminates
objects with parallel rays of light.

  Graphics systems can carry out
rendering calculations more efficiently
for distant light sources than for near
ones.
  OpenGL allows both

Material Properties

  Three different reflections
  ambient
  diffuse
  specular

Ambient Reflection
  The intensity of ambient light is the

same at every point on the surface.
  Some light is absorbed and some is

reflected.
  A surface has of course, three ambient

coefficients and they can be different.
  Hence, a sphere appears yellow under

white ambient light if its blue ambient
coefficient is small and its red and green
coefficients are large.

Diffuse Reflection
  A perfectly diffuse reflector scatters the light

that it reflects equally in all directions.
  Perfectly diffuse surfaces are so rough that

there is no preferred angle of reflection

Specular Reflection

  Only ambient and diffuse reflections
result in shaded but dull, somewhat
chalk-like surfaces.

  The highlights

Normal Vectors

  The surface normal gives the
orientation.

  Given 3 noncollinear points, normal is
  n = (p2-p0) x (p1-p0)
  Be careful about the order of the vectors.

Reversing the order changes the surface
from outward pointing to inward pointing.

GL Normals
  Associate a normal with a vertex through functions

such as
  glNormal3f(nx, ny, nz);
  glNormal3fv(ptr_to_array);
  Normals are modal: if we define a normal before a

sequence of vertices, this normal is associated with all the
vertices

  Set the normal to have unit length so cosine
calculations are correct
  Length can be affected by transformations
  glEnable(GL_NORMALIZE) allows for

autonormalization at a performance penalty

Polygonal Shading
  Consider the polygon mesh shown here.

We will consider three ways to shade
the polygons: flat, interpolative or
Gourand, and Phong shading

Flat Shading

  For a flat polygon, the normal is
constant

  The shading calculations only need to
be carried out once for each polygon.
  glShadeModel(GL_FLAT);

Interpolative and Gourand
Shading

  The normals are computed at each
vertex. Colors and intensities of interior
points are interpolated between
vertices.
  glShadeModel(GL_SMOOTH);

Phong Shading
  Instead of interpolating the intensities,

interpolate the normals
  Then do calculation of intensities

 using the interpolated normal
 (typically at scan conversion)

  Interpolating normals is much more expensive
than interpolating colors in Gourand Shading

  Phong shading (e.g., per pixel shading) can be
implemented using shaders in OpenGL

  Usually done off-line (not supported in OpenGL)

Light Sources in OpenGL

  OpenGL supports the four types of light
sources that we just described, and allows
at least 8 light sources per program.

  Each light source must be individually
specified and enabled.
  glLightfv(source, parameter,

pointer_to_array);
  glLightf(source, parameter, value);

Light Parameters
  The position (or direction) of the light, the amount of

ambient, diffuse, and specular light associated with
a source.
 GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};
 ...
 glLightfv(GL_LIGHT0, GL_POSITION, light0_pos);
glLightfv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightfv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
glLightfv(GL_LIGHT0, GL_SPECULAR, specular0);

 glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);

  Note that we must enable both lighting and all the
particular source lights.

Direction and Position

  When specifying a light position, a light
may either be directional (rays
parallel), or positional.
 float light0_pos[] = {1.0,1.0,1.0,0.0};
 glLightfv(GL_LIGHT0, GL_POSITION, light0_pos);

  If the 4th value is 0 then the light is
directional. Otherwise it is positional.

Other Lighting Functions

  Change lighting model
  glLightModel*(Param, value);
  GL_LIGHT_MODEL_AMIENT, (0.2,

0.2, 0.2)
  GL_LIGHT_MODEL_LOCAL_VIEWER,

GL_FALSE
  GL_LIGHT_MODEL_TWO_SIDED,

GL_FALSE

Spotlights

  Use glLightf to set
  Direction

GL_SPOT_DIRECTION

  Cutoff GL_SPOT_CUTOFF
  Exponent

GL_SPOT_EXPONENT

  Shininess controlled by
cosαφ	
 θ	
-θ	
 φ	

Moving Light Sources
  Light sources are geometric objects whose

positions or directions are affected by the
model-view matrix

  Depending on where we place the position
(direction) setting function, we can
  Move the light source(s) with the object(s)
  Fix the object(s) and move the light source(s)
  Fix the light source(s) and move the object(s)
  Move the light source(s) and object(s)

independently

Materials Specifications

  Material reflective parameters are
specified through the functions:
  glMaterialfv(face, type,

pointer_to_array);
  glMaterialf(face, value);

  For Example:
  glMaterialfv(GL_FRONT_AND_BACK,

GL_AMBIENT, ambient);

Material Properties
  To specify different front- and back-

face properties
  Use GL_FRONT or GL_BACK

  The shininess of a surface (specular-
reflection term) is specified as follows:
  glMatrialg(GL_FRONT,

GL_SHININESS, 100.0);

Material Properties

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shine = 100.0
glMaterialf(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);
glMaterialf(GL_FRONT, GL_SPECULAR, specular);
glMaterialf(GL_FRONT, GL_SHININESS, shine);

Emissive Term
  We can simulate a light source in

OpenGL by giving a material an emissive
component

  This color is unaffected by other light
sources.

GLfloat emission[] = 0.0, 0.8, 0.1, 1.0);
glMaterialf(GL_FRONT, GL_EMISSION, emission);

Red light Green Emissive

+ =

Steps in OpenGL shading

1.  Enable shading and select model
2.  Specify normals
3.  Specify material properties
4.  Specify lights

Efficiency
  Because material properties are part of the

state, if we change materials for many
surfaces, we can affect performance

  We can make the code cleaner by defining a
material structure and setting all materials
during initialization

  We can then select a material by a pointer

typedef struct materialStruct {
 GLfloat ambient[4];
 GLfloat diffuse[4];
 GLfloat specular[4];
 GLfloat shineness;
} MaterialStruct;

Smooth Shading

  We can set a new
normal at each vertex

  Easy for sphere model
  If centered at origin n = p

  Now smooth shading
works

  Note silhouette edge

Gouraud and Phong Shading

  Gouraud Shading
  Find average normal at each vertex (vertex

normals)
  Apply Phong model at each vertex
  Interpolate vertex shades across each polygon

  Phong shading
  Find vertex normals
  Interpolate vertex normals across edges
  Find shades along edges
  Interpolate edge shades across polygons

Comparison

  If the polygon mesh approximates surfaces
with a high curvatures, Phong shading may
look smooth while Gouraud shading may
show edges

  Phong shading requires much more work
than Gouraud shading
  Usually not available in real time systems

  Both need data structures to represent
meshes so we can obtain vertex normals

