
CS312

OpenGL
Viewing Transformations and
Projections

Controlling states
  Enabling features
glEnable(GL_DEPTH_TEST);

  Setting state
glShadeModel(GL_FLAT);
glShadeModel(GL_SMOOTH);

OpenGL Buffers

  Color buffer
  Front and back

  Depth buffer (z-buffer)
  Hidden surface removal

  Clearing buffers
  glClearColor(r,g,b,a);
  glClearDepth(1.0);
  glClear(GL_COLOR_BUFFER_BIT|

GL_DEPTH_BIT);

Depth Buffering
  Request a depth buffer

glutInitDisplayMode(GLUT_DEPTH|…);

  Enable depth buffering
glEnable(GL_DEPTH_TEST);

  Clear color and depth buffers
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);
  Render scene
  Swap color buffers

Moving the Camera

  The First Approach:
  Specify the position indirectly by applying

a sequence of rotations and translations
to the model-view matrix.

  This is a direct application of the
geometric transformations.

Moving the Camera

  We can move the camera to any desired
position by a sequence of rotations and
translations

  Example: side view
  Rotate the camera
  Move it away from origin
  Model-view matrix C = TR

Moving the Camera

  We must be careful for two reasons:
  First, we usually want to define the camera

before we position the objects in the scene.
  Second, transformations on the camera may

appear to be backward from what we might
expect.

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(-90.0, 0.0, 1.0, 0.0)

Viewing APIs

  We can take a different approach to
positioning the camera – We describe
the camera’s position and orientation
in the world frame
  It’s desired location is centered at the

view-reference point (VRP)
  It’s orientation is specified with the view-

plane normal (VPN) and the view-up
vector (VUP)

gluLookAt

  GL uses a more direct method, fortunately.

  gluLookAt(eyex, eyey, eyez, atx,
aty, atz, upx, upy, upz);

gluLookAt

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(…);

//transformations
//draw ojects

The OpenGL Camera
  In OpenGL, initially the world and

camera frames are the same
  Default model-view matrix is an identity

  The camera is located at origin and
points in the negative z direction

  OpenGL also specifies a default view
volume that is a cube with sides of
length 2 centered at the origin
  Default projection matrix is an identity

Default Projection

Default projection is orthogonal
clipped out

z=0

2

Projections in OpenGL

  The View Volume

Frustum
  Define clipping parameters through the

specification of a projection.
  The resulting view volume is a frustum

– which is a truncated pyramid.

Perspectives in OpenGL
  OpenGL has two functions for

specifying perspective views
  glFrustum(xmin, xmax, ymin,

ymax, near, far);

Current Matrix

  The projection matrix determined by
these specifications multiplies the
present matrix.

  A typical sequence
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glFrustum(xmin, xmax, ymin,

ymax, near, far);

Field of View

  gluPerspective(fovy, aspect,
near, far);

Parallel Viewing in OpenGL

  glOrtho(xmin, xmax, ymin,
ymax, near, far);

glut 3D Primitives

  Cube
  void glutSolidCube(GLdouble size);
  void glutWireCube(GLdouble size);

  Sphere
  void glutSolidSphere(GLdouble radius,

GLint slices, GLint stacks);
  void glutWireSphere(GLdouble radius,

GLint slices, GLint stacks);

glut 3D Primitives

  Teapot
  void glutSolidTeapot(GLdouble

size);
  void glutWireTeapot(GLdouble

size);

  Many other geometric shapes

Defining your own shapes

  Objects are surfaces – hollow inside
  Objects are approximated by flat,

convex polygons
  Each of these polygons (faces) is

given by a set of 3D vertices
  This set of vertices and how they

connect (edges) is known as a mesh

Representing a Mesh

  There are 8 nodes and 12 edges
  5 interior polygons
  6 interior (shared) edges

  Each vertex has a location vi = (xi yi zi)

v1 v2

v7

v6
v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

Simple Representation
  Define each polygon by the geometric

locations of its vertices

  Inefficient and unstructured
  Consider moving a vertex to a new

location

glBegin(GL_POLYGON);
 glVertex3f(x1, y1, z1);
 glVertex3f(x2, y2, z2);
 glVertex3f(x7, y7, z7);
glEnd();

Inward and Outward Facing
Polygons
  {v0, v3, v2, v1} and {v1, v0, v3, v2} are equivalent in

that the same polygon will be rendered by
OpenGL but the order {v0, v1, v2, v3} is different

  The first two describe outwardly facing polygons
  OpenGL can treat inward and
outward facing polygons differently

  Use the right-hand rule =>

Geometry vs Topology
  Generally it is a good idea to look for

data structures that separate the
geometry from the topology
  Geometry: locations of the vertices
  Topology: organization of the vertices

and edges
  Topology holds even if geometry changes

Geometry vs Topology
  Example: a cube can be specified with
GL_QUADS or GL_POLYGON 6 times

  Fails to capture the topology
  A polyhedron with 6 faces.
  Each face has 4 vertices
  Each vertex share 3 faces

Vertex Lists
  Put the geometry in an array
  Use pointers from the vertices into this array
  Introduce a polygon list

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

P1
P2
P3
P4
P5

v1
v2
v7

v8
v5
v6

topology geometry

Shared Edges

  Vertex lists will draw filled polygons correctly
but if we draw the polygon by its edges,
shared edges are drawn twice

  Can store mesh by edge list

Edge List

v1 v2

v7

v6
v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1
e2
e3
e4
e5
e6
e7
e8
e9

x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
x5 y5 z5.
x6 y6 z6
x7 y7 z7
x8 y8 z8

v1
v6

Note polygons are
not represented

Modeling a Cube

GLfloat vertices[][3] =
{{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},
 {1.0,1.0,-1.0},{-1.0,1.0,-1.0},{-1.0,-1.0,1.0},
 {1.0,-1.0,1.0},{1.0,1.0,1.0},{-1.0,1.0,1.0}};

GLfloat colors[][3] =
{{0.0,0.0,0.0},{1.0,0.0,0.0},
 {1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},
 {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Drawing a polygon from a list
of indices

void polygon(int a, int b, int c , int d){
 glBegin(GL_POLYGON);
 glColor3fv(colors[a]);
 glVertex3fv(vertices[a]);
 glVertex3fv(vertices[b]);
 glVertex3fv(vertices[c]);
 glVertex3fv(vertices[d]);
 glEnd();
 }

Draw cube from faces

void colorcube(){
 polygon(0,3,2,1);
 polygon(2,3,7,6);
 polygon(0,4,7,3);
 polygon(1,2,6,5);
 polygon(4,5,6,7);
 polygon(0,1,5,4);
}

0

5 6

2

4 7

1

3
Note that vertices are ordered so that
we obtain correct outward facing normals

Efficiency
  The weakness of our approach is that

we are building the model in the
application and must do many function
calls to draw the cube

  Drawing a cube by its faces in the
most straight forward way requires
  6 glBegin, 6 glEnd
  6 glColor
  24 glVertex
  More if we use texture and lighting

Vertex Arrays
  OpenGL provides a facility called vertex

arrays that allows us to store array data in the
implementation

  Six types of arrays supported
  Vertices
  Colors
  Color indices
  Normals
  Texture coordinates
  Edge flags

  We will need only colors and vertices

Initialization
  Using the same color and vertex data, first we

enable
glEnableClientState(GL_COLOR_ARRAY);
glEnableClientState(GL_VERTEX_ARRAY);

  Identify location of arrays
glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguous data array

Mapping indices to faces

  Form an array of face indices

  Draw through glDrawElements which
replaces all glVertex and glColor
calls in the display callback

GLubyte cubeIndices[24] = {0,3,2,1,
 2,3,7,6

 0,4,7,3,
 1,2,6,5,
 4,5,6,7,
 0,1,5,4};

Drawing the cube

  Method 1:

  Method 2:

for(i=0; i<6; i++)
 glDrawElements(GL_POLYGON, 4,
 GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw number of indices

glDrawElements(GL_QUADS, 24,
 GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

Idle Callback

  Minimize the amount of computation done in
an idle callback.

  If using idle for animation, stop rendering
when nothing changed, or window not
visible
glutVisibilityFunc(visible);
void visible(int vis) {
 if (vis == GLUT_VISIBLE)
 glutIdleFunc(idle);
 else
 glutIdleFunc(NULL);
}

Back Face Culling

  OpenGL can compute and remove
those faces that are facing away from
the viewer.

  glEnable(GL_CULL);

Timer Callback

  void glutTimerFunc(unsigned int msecs, void
(*func)(int value), value);

  Registers the timer callback func to be
triggered in at least msecs milliseconds.
 #define FR 60
 glutTimerFunc(100, myTimer, 0);
 void myTimer(int v) {

 //update and advance states
 glutPostRedisplay();
 glutTimerFunc(1000/FR, myTimer, v);

 }

