
CS312

OpenGL
Modeling Transformations

OpenGL Matrices

  In OpenGL matrices are part of the state
  Three types

  Model-View (GL_MODELVIEW)
  Projection (GL_PROJECTION)
  Texture (GL_TEXTURE) (ignore for now)

  Single set of functions for manipulation
  Select which to manipulated by

  glMatrixMode(GL_MODELVIEW);
  glMatrixMode(GL_PROJECTION);

Current Transformation Matrix
(CTM)

  Conceptually there is a 4 x 4
homogeneous coordinate matrix, the
current transformation matrix (CTM) that
is applied to all vertices that pass down
the pipeline

  The CTM is defined in the user program
and loaded into a transformation unit

CTM vertices vertices
p p’=Cp

C

CTM operations
  The CTM can be altered either by loading a

new CTM or by postmutiplication
Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S

CTM in OpenGL

  OpenGL has a model-view and a
projection matrix in the pipeline which
are concatenated together to form the
CTM

  Can manipulate each by first setting
the correct matrix mode

Matrix Operations
  Specify current matrix stack

glMatrixMode(GL_MODELVIEW) or
glMatrixMode(GL_PROJECTION)

  Matrix operations
  glLoadIdentity()
  glPushMatrix()
  glPopMatrix()
  glLoadMatrix()
  glMultMatrix()

Modeling Transformations

  Translation
  glTranslate{fd}(x,y,z)

  Rotation around arbitrary axis
  glRotate{fd}(angle, x,y,z)

  Scaling
  glScale{fd}(x,y,z)

  Multiplies onto the current matrix (use
GL_MODELVIEW)

Order of Transformations
  OpenGL post-multiplies matrices
  Operations occur in reverse order

glLoadIdentity();
glMultMatrix(M);
glMultMatrix(N); CIMNO(v)
glMultMatrix(O);
glBegin(GL_POINTS);
glVertex3fv(v);
glEnd();

Post-multiplication: Rotation
about a Fixed Point

  Start with identity matrix: C ← I
  Move fixed point to origin: C ← CT

  Rotate: C ← CR
  Move fixed point back: C ← CT -1
  Result: C = TR T –1 which is backwards.
  This result is a consequence of doing

postmultiplications.

Reversing the Order
  We want C = T –1 R T

  C ← I
  C ← CT -1

  C ← CR
  C ← CT
  Each operation corresponds to one function call in

the program.
  Note that the last operation specified is the first

executed in the program

Example

  Rotation about z axis by 30 degrees with a
fixed point of (1.0, 2.0, 3.0)

  Remember that last matrix specified in the
program is the first applied

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

Arbitrary Matrices
  Can load and multiply by matrices

defined in the application program

  The matrix m is a one dimension array of
16 elements which are the components
of the desired 4 x 4 matrix stored by
columns

  In glMultMatrixf, m multiplies the
existing matrix on the right

glLoadMatrixf(m)
glMultMatrixf(m)

Matrix Stacks
  In many situations we want to save

transformation matrices for use later
  Traversing hierarchical data structures
  Avoiding state changes when executing

display lists (introduced later)
  OpenGL maintains stacks for each type of

matrix
  Access present type (as set by

glMatrixMode) by glPushMatrix()
glPopMatrix()

Matrix Stack
  Code often looks like this:

 glPushMatrix();
 glTranslatef(…);
glRotatef(…);
/* draw object */
glPopMatrix();

Reading Back Matrices
  Can also access matrices (and other

parts of the state) by query functions

  For matrices, we use as

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

double m[16];
glGetFloatv(GL_MODELVIEW, m);

Smooth Rotation
  From a practical standpoint, we are often

want to use transformations to move and
reorient an object smoothly
  Problem: find a sequence of model-view

matrices M0,M1,…..,Mn so that when they
are applied successively to one or more
objects we see a smooth transition

  For orientating an object, we can use the
fact that every rotation corresponds to part
of a great circle on a sphere
  Find the axis of rotation and angle

Incremental Rotation
  Consider the two approaches

  For a sequence of rotation matrices
R0,R1,…..,Rn , find the Euler angles for
each and use Ri= Riz Riy Rix

  Not very efficient
  Use the final positions to determine the

axis and angle of rotation, then increment
only the angle

Animate with the Idle Callback
 void draw() {
 glPushMatrix();
 glRotatef(angle, 0,0,1);
 // draw
 glPopMatrix();
 glutSwapBuffers();
 }
 void animate() {

 angle += 2.0;
 glutPostRedisplay();

}
glutIdleFunc(animate);

Double buffering

  Two color buffers so that when one is
displayed, the other is being redrawn.

  When drawing is complete, buffers are
swapped.

  The viewer never sees an incompletely
drawn buffer.

  Eliminates flickering.

Animation using Double
Buffering

  Requests a double buffered color
buffer

  Clear color buffer
glClear(GL_COLOR_BUFFER_BIT)

  Render scene
  Request swapping of front and back

buffers

Double buffering in GL

  glInitDisplayMode(GLUT_DOUBLE);
  void display() {
 glClear(GL_COLOR_BUFFER_BIT);
 ...

 glutSwapBuffers();
 }

  glutSwapBuffers() flushes automatically

