CS312

OpenGL
Modeling Transformations

[OpenGL Matrices

In OpenGL matrices are part of the state

Three types

o Model-View (GL._MODELVIEW)

o Projection (GL_PROJECTION)

o Texture (GL_TEXTURE) (ignore for now)

Single set of functions for manipulation
Select which to manipulated by

0 glMatrixMode (GL MODELVIEW) ;
0 glMatrixMode (GL PROJECTION) ;

Current Transformation Matrix

(CTM)

Conceptually thereisa 4 x 4
homogeneous coordinate matrix, the
current transformation matrix (CTM) that
Is applied to all vertices that pass down

the pipeline

The CTM is defined in the user program
and loaded into a transformation unit

l C

p
vertices > CTM

p’=Cp

> vertices

CTM operations

The CTM can be altered either by loading a
new CTM or by postmutiplication

Load an 1dentity matrix: C <= 1
Load an arbitrary matrix: C < M

Load a translation matrix;: C << T
[Load a rotation matrix: C < R
Load a scaling matrix: C <= S

Postmultiply by an arbitrary matrix: C < CM
Postmultiply by a translation matrix: C <= CT
Postmultiply by a rotation matrix: C <= C R
Postmultiply by a scaling matrix: C <= C S

[CTM in OpenGL

OpenGL has a model-view and a
projection matrix in the pipeline which
are concatenated together to form the
CTM

Can manipulate each by first setting
the correct matrix mode

Vertices Vertices
- Model-view ——m» Projection >

| |
|
CTM

[Matrix Operations

Specify current matrix stack
glMatrixMode (GL MODELVIEW) Or
glMatrixMode (GL PROJECTION)

Matrix operations

0 glLoadIdentity ()
glPushMatrix ()
glPopMatrix ()
glLoadMatrix ()
glMultMatrix()

O O O O

[I\/Iodeling Transformations

Translation

0 glTranslate{fd} (x,y,2z)
Rotation around arbitrary axis

O glRotate{fd} (angle, x,vy,2z)
Scaling

O glScale{fd} (x,y, z)

Multiplies onto the current matrix (use
GL MODELVIEW)

[Order of Transformations

OpenGL post-multiplies matrices

Operations occur in reverse order
glLoadIdentity() ;

glMultMatrix (M) ;

glMultMatrix (N); ™= CIMNO (v)
glMultMatrix (O) ;
glBegin (GL POINTS) ;
glVertex3fv(v) ;

glEnd() ;

|

Post-multiplication: Rotation
about a Fixed Point

Start with identity matrix: C < 1
Move fixed point to origin: C < CT
Rotate: C < CR

Move fixed point back: C < CT !
Result: C=TR T ! which is backwards.

This result is a consequence of doing
postmultiplications.

[Reversing the Order

WewantC=T 'RT
C<1

C<CT"'!

C<CR

C<—CT

Each operation corresponds to one function call in
the program.

Note that the last operation specified is the first
executed in the program

O O O O O

[Example

Rotation about z axis by 30 degrees with a
fixed point of (1.0, 2.0, 3.0)

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;

glTranslatef (1.0, 2.0, 3.0);
glRotatef (30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

Remember that last matrix specified in the
program is the first applied

[Arbitrary Matrices

Can load and multiply by matrices
defined in the application program

glLoadMatrixf (m)
glMultMatrixf (m)

The matrix m is a one dimension array of
16 elements which are the components
of the desired 4 x 4 matrix stored by
columns

In glMultMatrix£, m multiplies the
existing matrix on the right

[Matrix Stacks

In many situations we want to save

transformation matrices for use later

o Traversing hierarchical data structures

o Avoiding state changes when executing
display lists (introduced later)

OpenGL maintains stacks for each type of
matrix

o Access present type (as set by
glMatrixMode) by glPushMatrix ()
glPopMatrix ()

[Matrix Stack

Code often looks like this:
glPushMatrix () ;

glTranslatef(..);

glRotatef (..) ;
/* draw object */
glPopMatrix () ;

Reading Back Matrices

Can also access matrices (and other
parts of the state) by query functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

For matrices, we use as

double m[1l6];
glGetFloatv(GL;MODELVIEW, m) ;

[Smooth Rotation

From a practical standpoint, we are often
want to use transformations to move and
reorient an object smoothly

o Problem: find a sequence of model-view
matrices M,,M,,.....,M_ so that when they
are applied successively to one or more
objects we see a smooth transition

For orientating an object, we can use the
fact that every rotation corresponds to part
of a great circle on a sphere

o Find the axis of rotation and angle

[Incremental Rotation

Consider the two approaches

o For a sequence of rotation matrices
Ry, R,,.....,R_, find the Euler angles for
each and use R~ R;, R;; R;;

Not very efficient
o Use the final positions to determine the

axis and angle of rotation, then increment
only the angle

Animate with the Idle Callback

void draw () {
glPushMatrix() ;
glRotatef (angle, 0,0,1);
// draw
glPopMatrix () ;
glutSwapBuffers() ;

}

void animate () ({
angle += 2.0;
glutPostRedisplay () ;

}
glutIdleFunc (animate) ;

[Double buffering

Two color buffers so that when one is
displayed, the other is being redrawn.

When drawing is complete, buffers are
swapped.

The viewer never sees an incompletely
drawn buffer.

Eliminates flickering.

Animation using Double
[Buffering

Requests a double buffered color
buffer

Clear color buffer
glClear (GL COLOR BUFFER BIT)

Render scene

Request swapping of front and back
buffers

[Double buffering in GL

glInitDisplayMode (GLUT DOUBLE) ;
void display () {
glClear (GL COLOR BUFFER BIT);

glutSwapBuffers() ;

}
glutSwapBuffers () flushes automatically

