CS212

OpenGL projection, basic
viewing and event handling



[Coordinate Systems

The units in glVertex are determined by the
application and are called object coordinates

In OpenGL object coordinates are first converted to
world coordinates

The viewing specifications are also in object
coordinates and it is the size of the viewing volume
that determines what will appear in the image

Internally, OpenGL will convert to camera
coordinates and later to screen coordinates



[OpenGL Camera

OpenGL places a camera at the origin
pointing in the negative z direction

The default viewing volume

IS a box centered at the
origin with a side of

length 2 //\




Orthographic Viewing

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

| | ~Viewing rectangle

X

z=0

2

z=0

s

(x, y, 2)



[Projection Transformation

Transformations are performed
through multiplying a matrix onto the
current matrix

0 glMatrixMode (GL PROJECTION) ;
0 glLoadIdentity() ;

Defines the view volume, i.e. what is
visible, and what is to be clipped off.



[Orthographical Projection

Creates a rectangular viewing volume
Distance from camera does not affect size

Creates a matrix for projecting 2D
coordinates onto the screen and multiply

the current projection matrix by it

void gluOrtho2D (GLdouble left, GLdouble
right, GLdouble bottom, GLdouble top) ;



Two- and three-dimensional
viewing
In glOrtho (left, right, bottom, top,

near, far)the near and far distances are
measured from the camera

Two-dimensional vertex commands place all
vertices in the plane z=0

If the application is in two dimensions, we can use
the function

gluOrtho2D (left,right,bottom, top)

In two dimensions, the view or clipping volume
becomes a clipping window



[Set up viewing

glMatrixMode (GL PROJECTION) ;
glLoadIdentity ()
glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
// or glOrtho2D(-1.0,1.0,-1.0,1.0);

glMatrixMode (GL MODELVIEW) ;



Viewports

Do not have use the entire window for
the image: glviewport (x,y,w,h)

Values in pixels (screen coordinates)

f( \\

- Viewport

Y

w I -Graphics window

O ~ /|:|°

Clipping window




[Physical Devices ]

@ é Threshold |

detector Computer
L

mouse trackball

<t X

data tablet joy stick

light pen

space ball



[Input Modes

Input devices contain a trigger which
can be used to send a signal to the

operating system
o Button on mouse
o Pressing or releasing a key



[Request Mode

Input provided to program only when
user triggers the device

Typical of keyboard input

o Can erase (backspace), edit, correct until
enter (return) key (the trigger) is
depressed

Request

brocsss | — vcems I' » Program \
Trigger Measure




[Event Mode

Most systems have more than one
input device, each of which can be
triggered at an arbitrary time by a user

Each trigger generates an event
whose measure is put in an event
queue which can be examined by the
user program

Await

Trigger Measure Event
rocess process queue e
g Trigger Measure Event



[EventTypeS

Window: resize, expose, iconify
Mouse: click one or more buttons
Motion: move mouse

Keyboard: press or release a key
|dle: nonevent

o Define what should be done if no other
event is in queue



[Callback functions

Called when something happens
o Window resize or redraw

o User input

o Animation

Register callbacks with GLUT
o glutDisplayFunc(display);
o glutldleFunc(idle); Function pointers



GLUT Event Callbacks

Callback actions:

glutDisplayFunc() ; // window redraw
glutKeyboardFunc () ; // a key is struck
glutReshapeFunc () ; // window reshapes
glutMouseFunc() ; // mouse button press
glutMotionFunc () ; // mouse moves and

// button held
glutPassiveMotionFunc () ; // mouse moves
glutIdleFunc() ; // on

idle



[Important callbacks

Display
o Called every time the main GL window is
drawn/refreshed

o This is where you do all of your rendering

|dle

o Use for animation and continuous update

o Update some variables/data structures
and call glutPostRedisplay ()



GLUT Event Loop

Remember that the last line in main.c for a
program using GLUT must be

glutMainLoop () ;
which puts the program in an infinite event loop

In each pass through the event loop, GLUT
olooks at the events in the queue

ofor each event in the queue, GLUT executes the
appropriate callback function if one is defined

oif no callback is defined for the event, the event is
ignored



[Posting redisplays

Many events may invoke the display callback
function

oCan lead to multiple executions of the display callback
on a single pass through the event loop

We can avoid this problem by instead using
glutPostRedisplay() ;
which sets a flag.

GLUT checks to see if the flag is set at the end
of the event loop

If set then the display callback function is
executed



Using globals

The form of all GLUT callbacks is fixed
ovoid display ()

ovoid mouse (GLint button, GLint state,
GLint x, GLint vy)

Must use globals to pass information to
callbacks

float t; /*global */

void display () {

/* draw something that depends on t
}



Mouse

void glutMouseFunc (void (*func) (int
button, int state, int x, int y));
GLUT LEFT BUTTON

GLUT RIGHT BUTTON

GLUT MIDDLE BUTTON

GLUT UP

GLUT DOWN

O O O O O

void glutMotionFunc (void (*func) (int
x,int y));

void glutPassiveMotionFunc (void (*func)
(int x, int y));



Positioning

A window is measured in pixels with
the origin at the top-left corner
o Consequence of refresh done top to bottom

OpenGL uses a world coordinate system
with origin at the bottom left

o Must invert y coordinate returned by callback by
height of window

o y=h-y, (0,0) —




Terminating a program

In our original programs, there was no
way to terminate them through
OpenGL

We can use the simple mouse callback

void mouse (int btn, int state, int x, int y) {
if (btn==GLUT_RI GHT BUTTON && sta te==GLUT_DOWN)
exit(0) ;



Using the keyboard

glutKeyboardFunc (keyboard)
Void keyboard (unsigned char key,
int x, int y)
oASCII code of key depressed and mouse location
oNote GLUT does not recognize key release as an event



Keyboard

void keyboard (unsigned char key, int x, int y) {
switch (key) {
case ‘q’: case ‘'Q’: case 27:
exit (0);
break;
case ‘p’: case ‘'P':
paused = 1;

break;



Key modifiers and special keys

int glutGetModifiers (void) ;
0 GLUT ACTIVE SHIFT

0 GLUT ACTIVE ALT

0 GLUT ACTIVE CTRL

void glutSpecialFunc (void (*func) (int
key, int x, int y));

O GLUT KEY F1 (F2 .. F12)

0 GLUT KEY UP (DOWN, LEFT, RIGHT)

© GLUT KEY PAGEUP (PAGEDOWN, HOME, END,
INSERT)

o passing in NULL will cause these keys to be ignored



[Reshaping the window

Resize the OpenGL display window by
pulling the corner of the window

What happens to the display?
o Must redraw from application

o Two possibilities
Display part of world

Display whole world but force to fit in new

window
o Can alter aspect ratio



[Reshape possibilities

original ‘

reshaped



[Window reshape

Viewport transformation:

o Maps image into window coordinates
o Mostly called in the resize function

void glutReshapeFunc (void

(*func) (1nt width, int height));
void reshape (int w, int h) ({

// Set the viewport to be the entire window

glViewport (0, 0, (GLint)w, (GLint)h)



[The Reshape callback

A redisplay is posted automatically at end of
execution of the callback

GLUT has a default reshape callback but
you probably want to define your own

The reshape callback is good place to put
camera functions because it is invoked when
the window is first opened and every time it
Is changed



Example Reshape

Project the viewport to window coordinate
system

void reshape (int w, int h) {
glViewport (0, 0, w, h);
glMatrixMode (GL PROJECTION) ; /* switch matrix mode */
glLoadIdentity () ;

gluOrtho2D (0.0, w, 0.0, h);

glMatrixMode (GL MODELVIEW); /* return to modelview mode */



