
CS212

OpenGL projection, basic
viewing and event handling

Coordinate Systems
 The units in glVertex are determined by the
application and are called object coordinates

 In OpenGL object coordinates are first converted to
world coordinates

 The viewing specifications are also in object
coordinates and it is the size of the viewing volume
that determines what will appear in the image

 Internally, OpenGL will convert to camera
coordinates and later to screen coordinates

OpenGL Camera

  OpenGL places a camera at the origin
pointing in the negative z direction

  The default viewing volume
 is a box centered at the
 origin with a side of
 length 2

Orthographic Viewing

z=0

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

z=0

Projection Transformation

  Transformations are performed
through multiplying a matrix onto the
current matrix
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();

  Defines the view volume, i.e. what is
visible, and what is to be clipped off.

Orthographical Projection

  Creates a rectangular viewing volume
  Distance from camera does not affect size
  Creates a matrix for projecting 2D

coordinates onto the screen and multiply
the current projection matrix by it
 void gluOrtho2D(GLdouble left, GLdouble
right, GLdouble bottom, GLdouble top);

Two- and three-dimensional
viewing

 In glOrtho(left, right, bottom, top,
near, far)the near and far distances are
measured from the camera

 Two-dimensional vertex commands place all
vertices in the plane z=0

 If the application is in two dimensions, we can use
the function
 gluOrtho2D(left,right,bottom,top)
 In two dimensions, the view or clipping volume
becomes a clipping window

Set up viewing

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity ();
 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
 // or glOrtho2D(-1.0,1.0,-1.0,1.0);

 glMatrixMode(GL_MODELVIEW);

Viewports

  Do not have use the entire window for
the image: glViewport(x,y,w,h)

  Values in pixels (screen coordinates)

Physical Devices

mouse trackball light pen

data tablet joy stick space ball

Input Modes
  Input devices contain a trigger which

can be used to send a signal to the
operating system
  Button on mouse
  Pressing or releasing a key

Request Mode

  Input provided to program only when
user triggers the device

  Typical of keyboard input
  Can erase (backspace), edit, correct until

enter (return) key (the trigger) is
depressed

Event Mode
  Most systems have more than one

input device, each of which can be
triggered at an arbitrary time by a user

  Each trigger generates an event
whose measure is put in an event
queue which can be examined by the
user program

Event Types

  Window: resize, expose, iconify
  Mouse: click one or more buttons
  Motion: move mouse
  Keyboard: press or release a key
  Idle: nonevent

  Define what should be done if no other
event is in queue

Callback functions

  Called when something happens
  Window resize or redraw
  User input
  Animation

  Register callbacks with GLUT
  glutDisplayFunc(display);
  glutIdleFunc(idle); Function pointers

GLUT Event Callbacks

  Callback actions:
glutDisplayFunc(); // window redraw
glutKeyboardFunc(); // a key is struck
glutReshapeFunc(); // window reshapes
glutMouseFunc(); // mouse button press
glutMotionFunc(); // mouse moves and

 // button held
glutPassiveMotionFunc(); // mouse moves
glutIdleFunc(); // on

idle

Important callbacks

  Display
  Called every time the main GL window is

drawn/refreshed
  This is where you do all of your rendering

  Idle
  Use for animation and continuous update
  Update some variables/data structures

and call glutPostRedisplay()

GLUT Event Loop

 Remember that the last line in main.c for a
program using GLUT must be
glutMainLoop();

which puts the program in an infinite event loop
 In each pass through the event loop, GLUT

 looks at the events in the queue
 for each event in the queue, GLUT executes the

appropriate callback function if one is defined
 if no callback is defined for the event, the event is

ignored

Posting redisplays
 Many events may invoke the display callback
function
 Can lead to multiple executions of the display callback

on a single pass through the event loop
 We can avoid this problem by instead using

glutPostRedisplay();
 which sets a flag.
 GLUT checks to see if the flag is set at the end
of the event loop

 If set then the display callback function is
executed

Using globals

 The form of all GLUT callbacks is fixed
 void display()
 void mouse(GLint button, GLint state,
GLint x, GLint y)

 Must use globals to pass information to
callbacks

float t; /*global */

void display() {
/* draw something that depends on t
}

Mouse

  void glutMouseFunc(void (*func)(int
button, int state, int x, int y));
  GLUT_LEFT_BUTTON
  GLUT_RIGHT_BUTTON
  GLUT_MIDDLE_BUTTON
  GLUT_UP
  GLUT_DOWN

  void glutMotionFunc(void (*func) (int
x,int y));

  void glutPassiveMotionFunc(void (*func)
(int x, int y));

Positioning

(0,0) h

w

  A window is measured in pixels with
the origin at the top-left corner
  Consequence of refresh done top to bottom

  OpenGL uses a world coordinate system
with origin at the bottom left
  Must invert y coordinate returned by callback by

height of window
  y = h – y;

Terminating a program

  In our original programs, there was no
way to terminate them through
OpenGL

  We can use the simple mouse callback

void mouse(int btn, int state, int x, int y){
 if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
 exit(0);
}

Using the keyboard

 glutKeyboardFunc(keyboard)
 Void keyboard(unsigned char key,
 int x, int y)

 ASCII code of key depressed and mouse location
 Note GLUT does not recognize key release as an event

Keyboard

void keyboard (unsigned char key, int x, int y){

 switch(key) {

 case ‘q’: case ‘Q’: case 27:

 exit (0);

 break;

 case ‘p’: case ‘P’:

 paused = 1;

 break;

 }

}

Key modifiers and special keys

  int glutGetModifiers(void);
  GLUT_ACTIVE_SHIFT
  GLUT_ACTIVE_ALT
  GLUT_ACTIVE_CTRL

  void glutSpecialFunc(void (*func) (int
key, int x, int y));
  GLUT_KEY_F1 (F2 … F12)
  GLUT_KEY_UP (DOWN, LEFT, RIGHT)
  GLUT_KEY_PAGEUP (PAGEDOWN, HOME, END,

INSERT)
  passing in NULL will cause these keys to be ignored

Reshaping the window

  Resize the OpenGL display window by
pulling the corner of the window

  What happens to the display?
  Must redraw from application
  Two possibilities

  Display part of world
  Display whole world but force to fit in new

window
  Can alter aspect ratio

Reshape possibilities

original

reshaped

Window reshape

  Viewport transformation:
  Maps image into window coordinates
  Mostly called in the resize function

  void glutReshapeFunc(void
(*func)(int width, int height));

void reshape(int w, int h) {

 // Set the viewport to be the entire window

 glViewport(0, 0, (GLint)w, (GLint)h);

}

The Reshape callback
 A redisplay is posted automatically at end of
execution of the callback

 GLUT has a default reshape callback but
you probably want to define your own

 The reshape callback is good place to put
camera functions because it is invoked when
the window is first opened and every time it
is changed

Example Reshape

 Project the viewport to window coordinate
system

void reshape(int w, int h) {
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION); /* switch matrix mode */
 glLoadIdentity();

 gluOrtho2D(0.0, w, 0.0, h);

 glMatrixMode(GL_MODELVIEW); /* return to modelview mode */
}

