
CS212

OpenGL projection, basic
viewing and event handling

Coordinate Systems
 The units in glVertex are determined by the
application and are called object coordinates

 In OpenGL object coordinates are first converted to
world coordinates

 The viewing specifications are also in object
coordinates and it is the size of the viewing volume
that determines what will appear in the image

 Internally, OpenGL will convert to camera
coordinates and later to screen coordinates

OpenGL Camera

  OpenGL places a camera at the origin
pointing in the negative z direction

  The default viewing volume
 is a box centered at the
 origin with a side of
 length 2

Orthographic Viewing

z=0

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

z=0

Projection Transformation

  Transformations are performed
through multiplying a matrix onto the
current matrix
  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();

  Defines the view volume, i.e. what is
visible, and what is to be clipped off.

Orthographical Projection

  Creates a rectangular viewing volume
  Distance from camera does not affect size
  Creates a matrix for projecting 2D

coordinates onto the screen and multiply
the current projection matrix by it
 void gluOrtho2D(GLdouble left, GLdouble
right, GLdouble bottom, GLdouble top);

Two- and three-dimensional
viewing

 In glOrtho(left, right, bottom, top,
near, far)the near and far distances are
measured from the camera

 Two-dimensional vertex commands place all
vertices in the plane z=0

 If the application is in two dimensions, we can use
the function
 gluOrtho2D(left,right,bottom,top)
 In two dimensions, the view or clipping volume
becomes a clipping window

Set up viewing

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity ();
 glOrtho(-1.0,1.0,-1.0,1.0,-1.0,1.0);
 // or glOrtho2D(-1.0,1.0,-1.0,1.0);

 glMatrixMode(GL_MODELVIEW);

Viewports

  Do not have use the entire window for
the image: glViewport(x,y,w,h)

  Values in pixels (screen coordinates)

Physical Devices

mouse trackball light pen

data tablet joy stick space ball

Input Modes
  Input devices contain a trigger which

can be used to send a signal to the
operating system
  Button on mouse
  Pressing or releasing a key

Request Mode

  Input provided to program only when
user triggers the device

  Typical of keyboard input
  Can erase (backspace), edit, correct until

enter (return) key (the trigger) is
depressed

Event Mode
  Most systems have more than one

input device, each of which can be
triggered at an arbitrary time by a user

  Each trigger generates an event
whose measure is put in an event
queue which can be examined by the
user program

Event Types

  Window: resize, expose, iconify
  Mouse: click one or more buttons
  Motion: move mouse
  Keyboard: press or release a key
  Idle: nonevent

  Define what should be done if no other
event is in queue

Callback functions

  Called when something happens
  Window resize or redraw
  User input
  Animation

  Register callbacks with GLUT
  glutDisplayFunc(display);
  glutIdleFunc(idle); Function pointers

GLUT Event Callbacks

  Callback actions:
glutDisplayFunc(); // window redraw
glutKeyboardFunc(); // a key is struck
glutReshapeFunc(); // window reshapes
glutMouseFunc(); // mouse button press
glutMotionFunc(); // mouse moves and

 // button held
glutPassiveMotionFunc(); // mouse moves
glutIdleFunc(); // on

idle

Important callbacks

  Display
  Called every time the main GL window is

drawn/refreshed
  This is where you do all of your rendering

  Idle
  Use for animation and continuous update
  Update some variables/data structures

and call glutPostRedisplay()

GLUT Event Loop

 Remember that the last line in main.c for a
program using GLUT must be
glutMainLoop();

which puts the program in an infinite event loop
 In each pass through the event loop, GLUT

 looks at the events in the queue
 for each event in the queue, GLUT executes the

appropriate callback function if one is defined
 if no callback is defined for the event, the event is

ignored

Posting redisplays
 Many events may invoke the display callback
function
 Can lead to multiple executions of the display callback

on a single pass through the event loop
 We can avoid this problem by instead using

glutPostRedisplay();
 which sets a flag.
 GLUT checks to see if the flag is set at the end
of the event loop

 If set then the display callback function is
executed

Using globals

 The form of all GLUT callbacks is fixed
 void display()
 void mouse(GLint button, GLint state,
GLint x, GLint y)

 Must use globals to pass information to
callbacks

float t; /*global */

void display() {
/* draw something that depends on t
}

Mouse

  void glutMouseFunc(void (*func)(int
button, int state, int x, int y));
  GLUT_LEFT_BUTTON
  GLUT_RIGHT_BUTTON
  GLUT_MIDDLE_BUTTON
  GLUT_UP
  GLUT_DOWN

  void glutMotionFunc(void (*func) (int
x,int y));

  void glutPassiveMotionFunc(void (*func)
(int x, int y));

Positioning

(0,0) h

w

  A window is measured in pixels with
the origin at the top-left corner
  Consequence of refresh done top to bottom

  OpenGL uses a world coordinate system
with origin at the bottom left
  Must invert y coordinate returned by callback by

height of window
  y = h – y;

Terminating a program

  In our original programs, there was no
way to terminate them through
OpenGL

  We can use the simple mouse callback

void mouse(int btn, int state, int x, int y){
 if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)
 exit(0);
}

Using the keyboard

 glutKeyboardFunc(keyboard)
 Void keyboard(unsigned char key,
 int x, int y)

 ASCII code of key depressed and mouse location
 Note GLUT does not recognize key release as an event

Keyboard

void keyboard (unsigned char key, int x, int y){

 switch(key) {

 case ‘q’: case ‘Q’: case 27:

 exit (0);

 break;

 case ‘p’: case ‘P’:

 paused = 1;

 break;

 }

}

Key modifiers and special keys

  int glutGetModifiers(void);
  GLUT_ACTIVE_SHIFT
  GLUT_ACTIVE_ALT
  GLUT_ACTIVE_CTRL

  void glutSpecialFunc(void (*func) (int
key, int x, int y));
  GLUT_KEY_F1 (F2 … F12)
  GLUT_KEY_UP (DOWN, LEFT, RIGHT)
  GLUT_KEY_PAGEUP (PAGEDOWN, HOME, END,

INSERT)
  passing in NULL will cause these keys to be ignored

Reshaping the window

  Resize the OpenGL display window by
pulling the corner of the window

  What happens to the display?
  Must redraw from application
  Two possibilities

  Display part of world
  Display whole world but force to fit in new

window
  Can alter aspect ratio

Reshape possibilities

original

reshaped

Window reshape

  Viewport transformation:
  Maps image into window coordinates
  Mostly called in the resize function

  void glutReshapeFunc(void
(*func)(int width, int height));

void reshape(int w, int h) {

 // Set the viewport to be the entire window

 glViewport(0, 0, (GLint)w, (GLint)h);

}

The Reshape callback
 A redisplay is posted automatically at end of
execution of the callback

 GLUT has a default reshape callback but
you probably want to define your own

 The reshape callback is good place to put
camera functions because it is invoked when
the window is first opened and every time it
is changed

Example Reshape

 Project the viewport to window coordinate
system

void reshape(int w, int h) {
 glViewport(0, 0, w, h);
 glMatrixMode(GL_PROJECTION); /* switch matrix mode */
 glLoadIdentity();

 gluOrtho2D(0.0, w, 0.0, h);

 glMatrixMode(GL_MODELVIEW); /* return to modelview mode */
}

