
CS312

OpenGL basics

What is openGL?

  A low-level graphics library
specification.

  A small set of geometric primitives:
  Points
  Lines
  Polygons
  Images
  Bitmaps

Geometric primitives

Image primitives

OpenGL Libraries

 OpenGL core library
 OpenGL32 on Windows
 GL/Mesa on most unix/linux systems

 OpenGL Utility Library (GLU)
 Provides functionality in OpenGL core but
avoids having to rewrite code

GL is window system
independent

  Extra libraries are needed to connect
GL to the OS
  GLX – X windows, Unix
  AGL – Apple Macintosh
  WGL – Microsoft Windows

GLUT

  OpenGL Utility Toolkit (GLUT)
  Provides functionality common to all

window systems
  Open a window
  Get input from mouse and keyboard
  Menus
  Event-driven

  Code is portable but GLUT is minimal

Software Organization

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif
widget or similar

OpenGL Architecture
Immediate Mode

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

Geometric
 pipeline

OpenGL State

  OpenGL is a state machine
  OpenGL functions are of two types

  Primitive generating
  Can cause output if primitive is visible
  How vertices are processed and appearance

of primitive are controlled by the state
  State changing

  Transformation functions
  Attribute functions

Typical GL Program Structure

  Configure and open a window
  Initialize GL state
  Register callback functions

  Render
  Resize
  Events

  Enter infinite event processing loop

Render/Display
  Draw simple geometric primitives
  Change states (how GL draws these

primitives)
  How they are lit or colored
  How they are mapped from the user's two- or

three-dimensional model space to the two-
dimensional screen.

  There are also calls to effect direct control of the
frame buffer, such as reading and writing pixels.

Header files

  #include <GL/gl.h>
  #include <GL/glu.h>
  #include <GL/glut.h>

Enumerated Types
C
pref

openGL type C type Data type

b GLbyte signed char 8-bit int
s GLshort short 16-bit int
i GLint, GLsizei int or long 32-bit int
f GLfloat, GLclampf float 32-bit float
d GLdouble, GLclampd double 64-bit float
ub GLubyte, GLboolean unsigned char 8-bit unsigned int
us GLushort unsigned short 16-bit unsigned

int
ui GLuint, GLenum,

GLbitfield
unsigned int or
unsigned long

32-bit unsigned
int

OpenGL Function Naming
Conventions

Library
prefix

Root
command

Number of
components

Data type Vector
b – byte

ub – unsigned byte

s – short

us – unsigned short

i – int

f – float

d - double

glVertex3fv(v)

gl

glu

glut

glVertex*

  Capitalizes first letter of each word
  glVertex{234}{sifd}[v](TYPE coords);

  glVertex2i(1, 2);
  glVertex3f(1.5, -2.0, M_PI);
  double v[3] = {0.0, 1.5, 3.6};

 glVertex3dv(v);
  Must appear btw glBegin and glEnd

A Simple Program

Generate a square on a solid background

Simple program
int main(int argc, char** argv){
 glutCreateWindow("simple");
 glutDisplayFunc(display);
 glutMainLoop();

 return 0;
}

display()
void display(){
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_POLYGON);
 glVertex2f(-0.5, -0.5);
 glVertex2f(-0.5, 0.5);
 glVertex2f(0.5, 0.5);
 glVertex2f(0.5, -0.5);
 glEnd();
 glFlush();

}

Event Loop
  The program defines a display

callback function named display
  Every glut program must have a display

callback
  The display callback is executed

whenever OpenGL decides the display
must be refreshed, for example when the
window is opened

  The main function ends with the program
entering an event loop

Defaults

  simple.c is too simple
  Makes heavy use of state variable

default values for
  Viewing
  Colors
  Window parameters

  Next version will make the defaults
more explicit

Notes on compilation

  Unix/linux
  Include files usually in /usr/include/
  Compile with –lglut –lGLU –lGL

loader flags
  May have to add –l flag for X libraries
  Mesa implementation included with most

linux distributions

simple.c revisited

  In this version, we will see the same
output but we have defined relevant
state values through function calls with
the default values

  In particular, we set
  Colors
  Window properties

main.c

int main(int argc, char** argv) {
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow(argv[0]);
 glutDisplayFunc(display);

 init();

 glutMainLoop();
}

define window properties

set OpenGL state

enter event loop

display callback

GLUT functions
 glutInit allows application to get command line

arguments and initializes system
 gluInitDisplayMode requests properties for the

window (the rendering context)
 RGB color
 Single buffering
 Properties logically ORed together

 glutWindowSize in pixels
 glutWindowPosition from top-left corner of display
 glutCreateWindow create window with title
 glutDisplayFunc display callback
 glutMainLoop enter infinite event loop

init.c

void init() {
 glClearColor (0.0, 0.0, 0.0, 0.0);

 glColor3f(1.0, 1.0, 1.0);
}

black clear color

draw with white

Specifiying geometric primitives

  Each geometric object is described
by:
  A set of vertices
  Type of the primitive

Specifying geometric primitives
glBegin()

glEnd()

GL_POINTS
GL_LINES
GL_TRIANGLES
GL_QUADS
GL_POLYGON

GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
GL_QUAD_STRIP

OpenGL Primitives

GL geometric primitives

Geometric primitives: examples

glBegin(GL_LINES);
 [lots of
 glVertex
 calls];

glEnd();

glBegin(GL_QUADS);
 [lots of

 glVertex
 calls];

glEnd();

Polygon Issues
  OpenGL only correctly displays polygons that are

  Simple: edges cannot cross
  Convex: All points on line segment between

two points in a polygon are also in the polygon
  Flat: all vertices are in the same plane

  Triangles satisfy all conditions

nonsimple polygon nonconvex polygon

Attributes
  Attributes are part of the OpenGL state

and determine the appearance of
objects
  Color (points, lines, polygons)
  Size and width (points, lines)
  Stipple pattern (lines, polygons)
  Polygon mode

  Display as filled: solid color or stipple
pattern

  Display edges

RGB color
 Each color component is stored separately in
the frame buffer

 Usually 8 bits per component in buffer
 In glColor3f the color values range from
0.0 (none) to 1.0 (all)

RGB: glColor*

glColor3f(0.0, 0.0, 0.0) – black
glColor3f(1.0, 0.0, 0.0) – red
glColor3f(0.0, 1.0, 0.0) – green
glColor3f(0.0, 0.0, 1.0) – blue
glColor3f(1.0, 1.0, 0.0) – yellow
glColor3f(1.0, 0.0, 1.0) – magenta
glColor3f(0.0, 1.0, 1.0) – cyan
glColor3f(1.0, 1.0, 1.0) – white

Indexed Color
  Colors are indices into tables of RGB

values
  Requires less memory

  indices usually 8 bits

GL color models

  glutInitDisplayMode()
  GLUT_RGBA == GLUT_RGB
  GLUT_INDEX

  glClearColor(1.0, 1.0, 1.0, 0.0);

Alpha value –
controls transparency
Set to 0.0 for now

Color and State
 The color as set by glColor becomes part of
the state and will be used until changed
 Colors and other attributes are not part of the
object but are assigned when the object is
rendered

 We can create conceptual vertex colors by code
such as

 glColor
 glVertex
 glColor
 glVertex

Smooth Color

  Default is smooth shading
  OpenGL interpolates vertex colors across

visible polygons
  Alternative is flat shading

  Color of first vertex
determines fill color

  glShadeModel
(GL_SMOOTH)
or GL_FLAT

