
CS312

OpenGL basics

What is openGL?

  A low-level graphics library
specification.

  A small set of geometric primitives:
  Points
  Lines
  Polygons
  Images
  Bitmaps

Geometric primitives

Image primitives

OpenGL Libraries

 OpenGL core library
 OpenGL32 on Windows
 GL/Mesa on most unix/linux systems

 OpenGL Utility Library (GLU)
 Provides functionality in OpenGL core but
avoids having to rewrite code

GL is window system
independent

  Extra libraries are needed to connect
GL to the OS
  GLX – X windows, Unix
  AGL – Apple Macintosh
  WGL – Microsoft Windows

GLUT

  OpenGL Utility Toolkit (GLUT)
  Provides functionality common to all

window systems
  Open a window
  Get input from mouse and keyboard
  Menus
  Event-driven

  Code is portable but GLUT is minimal

Software Organization

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif
widget or similar

OpenGL Architecture
Immediate Mode

Display
List

Polynomial
Evaluator

Per Vertex
Operations &

Primitive
Assembly

Rasterization Per Fragment
Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

Geometric
 pipeline

OpenGL State

  OpenGL is a state machine
  OpenGL functions are of two types

  Primitive generating
  Can cause output if primitive is visible
  How vertices are processed and appearance

of primitive are controlled by the state
  State changing

  Transformation functions
  Attribute functions

Typical GL Program Structure

  Configure and open a window
  Initialize GL state
  Register callback functions

  Render
  Resize
  Events

  Enter infinite event processing loop

Render/Display
  Draw simple geometric primitives
  Change states (how GL draws these

primitives)
  How they are lit or colored
  How they are mapped from the user's two- or

three-dimensional model space to the two-
dimensional screen.

  There are also calls to effect direct control of the
frame buffer, such as reading and writing pixels.

Header files

  #include <GL/gl.h>
  #include <GL/glu.h>
  #include <GL/glut.h>

Enumerated Types
C
pref

openGL type C type Data type

b GLbyte signed char 8-bit int
s GLshort short 16-bit int
i GLint, GLsizei int or long 32-bit int
f GLfloat, GLclampf float 32-bit float
d GLdouble, GLclampd double 64-bit float
ub GLubyte, GLboolean unsigned char 8-bit unsigned int
us GLushort unsigned short 16-bit unsigned

int
ui GLuint, GLenum,

GLbitfield
unsigned int or
unsigned long

32-bit unsigned
int

OpenGL Function Naming
Conventions

Library
prefix

Root
command

Number of
components

Data type Vector
b – byte

ub – unsigned byte

s – short

us – unsigned short

i – int

f – float

d - double

glVertex3fv(v)

gl

glu

glut

glVertex*

  Capitalizes first letter of each word
  glVertex{234}{sifd}[v](TYPE coords);

  glVertex2i(1, 2);
  glVertex3f(1.5, -2.0, M_PI);
  double v[3] = {0.0, 1.5, 3.6};

 glVertex3dv(v);
  Must appear btw glBegin and glEnd

A Simple Program

Generate a square on a solid background

Simple program
int main(int argc, char** argv){
 glutCreateWindow("simple");
 glutDisplayFunc(display);
 glutMainLoop();

 return 0;
}

display()
void display(){
 glClear(GL_COLOR_BUFFER_BIT);
 glBegin(GL_POLYGON);
 glVertex2f(-0.5, -0.5);
 glVertex2f(-0.5, 0.5);
 glVertex2f(0.5, 0.5);
 glVertex2f(0.5, -0.5);
 glEnd();
 glFlush();

}

Event Loop
  The program defines a display

callback function named display
  Every glut program must have a display

callback
  The display callback is executed

whenever OpenGL decides the display
must be refreshed, for example when the
window is opened

  The main function ends with the program
entering an event loop

Defaults

  simple.c is too simple
  Makes heavy use of state variable

default values for
  Viewing
  Colors
  Window parameters

  Next version will make the defaults
more explicit

Notes on compilation

  Unix/linux
  Include files usually in /usr/include/
  Compile with –lglut –lGLU –lGL

loader flags
  May have to add –l flag for X libraries
  Mesa implementation included with most

linux distributions

simple.c revisited

  In this version, we will see the same
output but we have defined relevant
state values through function calls with
the default values

  In particular, we set
  Colors
  Window properties

main.c

int main(int argc, char** argv) {
 glutInit(&argc,argv);
 glutInitDisplayMode(GLUT_SINGLE|GLUT_RGB);
 glutInitWindowSize(500,500);
 glutInitWindowPosition(0,0);
 glutCreateWindow(argv[0]);
 glutDisplayFunc(display);

 init();

 glutMainLoop();
}

define window properties

set OpenGL state

enter event loop

display callback

GLUT functions
 glutInit allows application to get command line

arguments and initializes system
 gluInitDisplayMode requests properties for the

window (the rendering context)
 RGB color
 Single buffering
 Properties logically ORed together

 glutWindowSize in pixels
 glutWindowPosition from top-left corner of display
 glutCreateWindow create window with title
 glutDisplayFunc display callback
 glutMainLoop enter infinite event loop

init.c

void init() {
 glClearColor (0.0, 0.0, 0.0, 0.0);

 glColor3f(1.0, 1.0, 1.0);
}

black clear color

draw with white

Specifiying geometric primitives

  Each geometric object is described
by:
  A set of vertices
  Type of the primitive

Specifying geometric primitives
glBegin()

glEnd()

GL_POINTS
GL_LINES
GL_TRIANGLES
GL_QUADS
GL_POLYGON

GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN
GL_QUAD_STRIP

OpenGL Primitives

GL geometric primitives

Geometric primitives: examples

glBegin(GL_LINES);
 [lots of
 glVertex
 calls];

glEnd();

glBegin(GL_QUADS);
 [lots of

 glVertex
 calls];

glEnd();

Polygon Issues
  OpenGL only correctly displays polygons that are

  Simple: edges cannot cross
  Convex: All points on line segment between

two points in a polygon are also in the polygon
  Flat: all vertices are in the same plane

  Triangles satisfy all conditions

nonsimple polygon nonconvex polygon

Attributes
  Attributes are part of the OpenGL state

and determine the appearance of
objects
  Color (points, lines, polygons)
  Size and width (points, lines)
  Stipple pattern (lines, polygons)
  Polygon mode

  Display as filled: solid color or stipple
pattern

  Display edges

RGB color
 Each color component is stored separately in
the frame buffer

 Usually 8 bits per component in buffer
 In glColor3f the color values range from
0.0 (none) to 1.0 (all)

RGB: glColor*

glColor3f(0.0, 0.0, 0.0) – black
glColor3f(1.0, 0.0, 0.0) – red
glColor3f(0.0, 1.0, 0.0) – green
glColor3f(0.0, 0.0, 1.0) – blue
glColor3f(1.0, 1.0, 0.0) – yellow
glColor3f(1.0, 0.0, 1.0) – magenta
glColor3f(0.0, 1.0, 1.0) – cyan
glColor3f(1.0, 1.0, 1.0) – white

Indexed Color
  Colors are indices into tables of RGB

values
  Requires less memory

  indices usually 8 bits

GL color models

  glutInitDisplayMode()
  GLUT_RGBA == GLUT_RGB
  GLUT_INDEX

  glClearColor(1.0, 1.0, 1.0, 0.0);

Alpha value –
controls transparency
Set to 0.0 for now

Color and State
 The color as set by glColor becomes part of
the state and will be used until changed
 Colors and other attributes are not part of the
object but are assigned when the object is
rendered

 We can create conceptual vertex colors by code
such as

 glColor
 glVertex
 glColor
 glVertex

Smooth Color

  Default is smooth shading
  OpenGL interpolates vertex colors across

visible polygons
  Alternative is flat shading

  Color of first vertex
determines fill color

  glShadeModel
(GL_SMOOTH)
or GL_FLAT

