
Computer Graphics 

Curves 

Based on slides by Dianna Xu, Bryn Mawr College 



The World is not Flat 

  A way to represent true mathematical 
curvature. 

  Rendering will convert the model back to 
many flat polygons. 

  How closely the flat polygons approximate 
the original model can be controlled.  



Simple Curves and Surfaces 

  Lines and planes 
  Conics 

  Quadric surfaces 

Ellipsoid Hyperboloid of one sheet Hyperboloid of two sheets Elliptic Paraboloid Hyperbolic Paraboloid 
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Mathematical Representations of 
Curves and Surfaces 

  A system of (polynomial) equations 
  Parametric form 

  Implicit form 



Parametric Curves 

  Cubic 

  Helix 



Möbius Band 



Boy’s Surface 



Barth’s Dectic 



Cubic Curves  

  Parametric form: 

  The shape of the curve depends on the 
coefficients, which are derived from 
control points. 



Cubic Interpolating Curves 

  Given 4 control points p0, p1, p2, p3. 
  Interpolation means the curve must pass 

through the above points. 
  Solve the system of equations, with u 

evenly spaced, i.e. u=0, 1/3, 2/3, 1 



Cubic Interpolating Curves 

  The system of equations: 



Cubic Bézier Curves 

  Bézier curves interpolate the endpoints. 
  Thus the equations at p0 and p1 are 

exactly the same as cubic curves  
  Bézier proposed to use middle points to 

approximate derivatives at endpoints. 



Bézier Curves 

  Given        control points,  
   the curve is specified by 

  Where            is the Bernstein Polynomial: 



Bézier Equations 

  Linear 

  Quadratic 

  Cubic 



Bézier Curves: Examples 
  Changing the position of a control point will 

change the shape of the curve  



De Casteljau algorithm 



Wiggling Effect 

  Happens when interpolating,  
 forcing curve through data  
 points 

  Wiggling gets much worse  
 with higher degree 



Splines 

  Use SEVERAL polynomials 
  Complete curve consists of many pieces 
  All pieces are of low order 

  Third order (cubic) is the most common 
  Pieces join smoothly as measured by 

continuity. 



Parametric Continuity 

      – common endpoint 
      – tangent vectors also agree 
      – change in tangents also agree  
      – 0th through kth derivatives match 



Joining Bézier Segments 

  Joining Bézier segments requires 
additional constraints at endpoints to 
match up derivatives in order to satisfy 
continuity conditions. 

  Composite Bézier curves can achieve C2 
continuity. 

  Addition systems of equations much be 
solved. 



B-splines 

  B-splines are similar to Bézier curves, just 
with a different basis (blending) function. 

  The new basis function provides: 
  Built-in continuity at joint points – the basis 

functions themselves are C2 continuous. 
  Local support – control points only influence 

local section of the curve. 



Knots 

  The sequence of values is known as a knot 
vector 

  The knots specify the joining points of the 
segments, much as knots joining strings. 

  Knots may be equal. 
  If there are m+1 knots and n+1 control points, 

the degree of the curve is p=m-n-1 
  When internal knots are evenly spaced, the 

resulting B-spline is called uniform. 



B-Spline Formulation 

  Equation 

  where  



Modifying the Knots 

  Three curves defined by 10 
(n=9) control points and is of 
degree 6.  

  Their internal knot vectors 
are  
  (0.25,0.5,0.75) –  red curve,  
  (0.25,0.25,0.75) –  blue curve 
  (0.25,0.25,0.25) – black curve.  



Other Spline Curves 

  Rational B-splines 
  Basis function is rational 

  NURBs  
  Non-Uniform Rational B-splines 


