
Computer Graphics
Texture, Environment and Other Maps

Based on slides by Dianna Xu, Bryn Mawr College

The Limits of Geometric Modeling

•  Although graphics cards can render
over 10 million polygons per second,
that number is insufficient for many
phenomena
– Clouds
– Grass
– Terrain
– Skin

Modeling an Orange

•  Start with an orange-colored sphere
– Too simple

•  Replace sphere with a more complex
shape
– Does not capture surface characteristics

(small dimples)
•  Takes too many polygons to model all

the dimples

Modeling an Orange
•  Take a picture of a real orange, scan it, and

“paste” onto simple geometric model
– This process is texture mapping

•  Still might not be sufficient because
resulting surface will be smooth
– Need to change local shape
– Bump mapping

Three Types of Mapping

•  Texture Mapping
–  Uses images to fill polygons

•  Environmental (reflection mapping)
–  Uses a picture of the environment for texture maps
–  Allows simulation of highly specular surfaces

•  Bump mapping
–  Emulates altering normal vectors during the rendering

process

Texture Mapping

geometric model texture mapped

Environment Mapping

Bump Mapping

Mapping

•  Mapping means taking a 2D (or 3D)
function and applying it to any of the
attributes of an object or object surface.

•  Maps can be explicit arrays of values
(such as in 2D images) or procedurally-
defined functions F(u,v).

•  Maps can modify colors, transmittance,
reflective properties, shape, etc.

Efficiency of Texture Maps over
Detailed Geometric Modeling

Texture Mapping Examples

All based on same 2D checkerboard texture

Textures Save Excess Geometric
Modeling

Texture attached to Geometry

Where does mapping take place?

•  Mapping techniques are implemented at the end
of the rendering pipeline
– Very efficient because few polygons make it

past the clipper

A Very Simple Example of Texture
Mapping

•  Texture is image (u,v) with 100×100 texels
•  Polygon is unit square (s,t) with 0≤s≤1 and

0≤t≤1
•  Texture mapping:

– s = u/99
–  t = v/99

•  Inverse texture mapping:
– u = round(99s)
– v = round(99t)

Simple Texture Mapping

Texture (u,v) coordinates Polygon (s,t) coordinates

(0,0)

(1,1)

(0,0)

(99,99)

v

u s

t

Is it Simple?
•  Although the idea is simple – map an

image to a surface – there are 3 or 4
coordinate systems involved

3D surface

2D image

Coordinate Systems

•  Parametric coordinates
– May be used to model curved surfaces

•  Texture coordinates
– Used to identify points in the image to be

mapped
•  World Coordinates

– Conceptually, where the mapping takes
place

•  Screen Coordinates
– Where the final image is really produced

Texture Mapping

parametric coordinates

texture coordinates
world coordinates

screen coordinates

Mapping Functions
•  Basic problem is how to find the maps
•  Consider mapping from texture coordinates to a

point a surface
•  Appear to need three functions

–  x = Fx(s,t)
–  y = Fy(s,t)
–  z = Fz(s,t)

•  But we really want to go the other way

s

t

(x,y,z)

Texture Mapping Concept

Pixel on screen

Surface of object

Texture map
v

u

x

y

Viewing transformation

Texture mapping
transformation

t

s

preimage

Texture Mapping Computation

Pixel on screen

Surface of object

Texture map
v

u

x

y

Inverse of
viewing transformation

Inverse of texture mapping
transformation

Bi-linear filter:
interpolate and
area-weight color

t

s

preimage

Mapping Texture Color Back to
Screen

Pixel on screen

Surface of object

Texture map v

u

x

y

Shade computation

Color from texture

t

s

preimage

Backward Mapping

•  We really want to go from model to
texture
– Given a point on an model, we want to know to

which point in the texture it corresponds

•  Need a map of the form
– s = Fs(x,y,z)
– t = Ft(x,y,z)

•  Such functions may be difficult to find in
general

Two-part mapping

•  What we need is a parameterization.
•  One solution is to first map the texture to a

simple intermediate surface, which has a
parameterization (u, v).

•  Map to cylinder

€

p(u,v) =

fx(u,v)
fy(u,v)
fz(u,v)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

Cylindrical Mapping

parametric cylinder

maps rectangle in (u,v) parameter space to cylinder
of radius r and height h in world coordinates (x, y, z)

s = u
t = v

maps from texture space to parameter space

Environment Maps

•  Used as a cheap alternative to ray tracing
shiny objects

•  Object must be small w.r.p to the
environment

•  New map is required whenever the
viewpoint changes

Spherical Maps

•  Take a picture of the environment with
a very wide-angle lens.

•  Project the environment picture (map)
onto a sphere centered at the center of
projection.

•  Shrink-wrap the sphere onto the object

Box Mapping
•  Easy to use with simple orthographic

projection
•  Also used in environment maps

Second Mapping
•  Map from intermediate object to actual object

– Normals from intermediate to actual
– Normals from actual to intermediate
– Vectors from center of intermediate

intermediate actual

Mirror Reflection Example

Chromosaurus

Aliasing
•  Point sampling of the texture can lead to

aliasing errors

point samples in u,v
(or x,y,z) space

point samples in texture space

missing blue stripes

Aliasing

•  Pixels have finite and discrete sizes.
•  Any mapping is ultimately a discrete

sampling of the texture, which can have
the unfortunate tendency to miss the
important parts.

•  Most visible on periodic/repeated patterns.

Area Averaging

Note that preimage of pixel is curved

preimage

 A better but slower option is to use preimage
area averaging

pixel

Textured Map Scene

Some of the Textures Used

Mapping to Curved Surfaces

Using an Animated Texture Map

Texture Billboards (Real-Time
Interaction)

•  Use the camera position as a target for
the normal vector of a polygon to be
textured. Polygon thus always faces
the camera.

•  If one has different textures for
different camera views, one can create
the appearance of view-dependent 3D
appearance on a billboard polygon
(e.g., game character sprites).

Example

Using a Map to Vary the
Reflectance Function

Light Maps

•  An efficient technique for static objects
and lighting.

•  Pre-calculate light intensity and color
across polygon surface.

•  Linear filter (e.g. Gouraud) for pixel
shade at run time.

•  Add other dynamic lighting components
at run time.

Light Maps

Policarpo
and Watt

Bump Mapping (2D Analogy)
P(u)
Original surface

B(u)
A bump map – 2D height field

P'(u)
Lengthening or shortening P(u)
Using B(u)

N'(u)
Perturb normals by partial derivatives
of B(u). Obtain the vectors to the
“new” surface

Bump Mapping (2D Map to 3D
Effect)

0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 2 5 5 2 0 0
0 1 5 9 9 5 1 0
0 1 5 9 9 5 1 0
0 0 2 5 5 2 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0

Bump map

Bump map perturbs the
local normal vector by the
partial derivatives of the
map values, giving the
illusion of curvature. Demo

applied
like
texture
map,
but...

Bump Mapping Adds Visual
Complexity Cheaply

Certain Textures Models Work
Well with Bump Maps

Displacement Mapping

•  Start with parameterized object surface S
(u,v).

•  Displacement map: a 2D height field or
function D(u,v).

•  Apply corresponding height
(displacement) S(u,v)+D(u,v).

Example

Original surface
S(u,v)

0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 2 5 5 2 0 0
0 1 5 9 9 5 1 0
0 1 5 9 9 5 1 0
0 0 2 5 5 2 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 Bump map D(u,v)

New surface with
actual displacements
S(u,v)+D(u,v)

Scene with Displacement Map

Reflection Map

Scene with Displacement and
Reflection Maps

