
Computer Graphics 
From Vertices to Fragments:  

Clipping, HSR, Rasterization and Anti-aliasing 

Based on slides by Dianna Xu, Bryn Mawr College 



Rendering Algorithms 

• Rendering a scene with opaque objects 
– For every pixel, determine which object 
that projects on the pixel is closest to the 
viewer and compute the shade of this pixel 

– Ray tracing paradigm 
– For every object, determine which pixels it 
covers and shade these pixels 

• Pipeline approach 
• Must keep track of depths 



Common Tasks 
•  Clipping 
•  Hidden surface removal 
•  Rasterization or scan conversion 
•  Antialiasing 



Clipping 
• 2D against clipping window 
• 3D against clipping volume 
• Easy for line segments polygons 
• Hard for curves and text 

– Convert to lines and polygons first 



Clipping 2D Line Segments 

•  Brute force approach: compute 
intersections with all sides of clipping 
window 
–  Inefficient: one division per intersection 



Cohen-Sutherland Algorithm 

•  Idea: eliminate as many cases as possible 
without computing intersections 

•  Start with four lines that determine the 
sides of the clipping window 

x = xmax x = xmin 

y = ymax 

y = ymin 



The Cases 

• Case 1: both endpoints of line segment inside all 
four lines 

– Draw (accept) line segment as is 

• Case 2: both endpoints outside all lines and on 
same side of a line 

– Discard (reject) the line segment 

x = xmax x = xmin 

y = ymax 

y = ymin 



The Cases 
•  Case 3: One endpoint inside, one outside 

– Must do at least one intersection 
•  Case 4: Both outside 

– May have part inside 
– Must do at least one intersection 

x = xmax x = xmin 

y = ymax 



Defining Outcodes 

• For each endpoint, define an outcode 

• Outcodes divide space into 9 regions 
• Computation of outcode requires at most 4 
subtractions 

b0b1b2b3 

b0 = 1 if y > ymax, 0 otherwise 
b1 = 1 if y < ymin, 0 otherwise 
b2 = 1 if x > xmax, 0 otherwise 
b3 = 1 if x < xmin, 0 otherwise 



Using Outcodes 

•  Consider the 5 cases below 
•  AB: outcode(A) = outcode(B) = 0 

– Accept line segment 



Using Outcodes 
•  CD: outcode (C) = 0, outcode(D) ≠ 0 

– Compute intersection 
– Location of 1 in outcode(D) determines which 

edge to intersect with 
– Note if there were a segment from C to a point 

in a region with 2 ones in outcode, we might 
have to do two intersections 



Using Outcodes 

•  EF: outcode(E)  & outcode(F) (bitwise) != 0 
– Both outcodes have a 1 bit in the same place 
– Line segment is outside of corresponding 

side of clipping window 
– reject 



Using Outcodes 
•  GH and IJ: same outcodes, neither zero but 

logical AND yields zero 
•  Shorten line segment by intersecting with 

one of sides of window 
•  Compute outcode of intersection (new 

endpoint of shortened line segment) 
•  Re-execute algorithm 



Cohen Sutherland in 3D 
• Use 6-bit outcodes  
• When needed, clip line segment against planes 



Liang-Barsky Clipping 
• Consider the parametric form of a line segment 

• We can distinguish between the cases by looking at the 
ordering of the values of α where the line determined by 
the line segment crosses the lines that determine the 
window 

p(α) = (1-α)p1+ αp2   1 ≥ α ≥ 0 

p1 

p2 



Liang-Barsky Clipping 
•  In (a): α4 > α3 > α2 > α1 

–  Intersect right, top, left, bottom: shorten 
•  In (b): α4 > α2 > α3 > α1  

–  Intersect right, left, top, bottom: reject 



Advantages 
•  Can accept/reject as easily as with Cohen-

Sutherland 
•  Using values of α, we do not have to use 

algorithm recursively as with C-S 
•  Extends to 3D 



Clipping and Normalization 

•  General clipping in 3D requires 
intersection of line segments against 
arbitrary plane 

•  Example: oblique view 



Plane-Line Intersections 



Normalized Form 

before normalization after normalization 

Normalization is part of viewing (pre clipping) 
but after normalization, we clip against sides of 
right parallelepiped 

Typical intersection calculation now requires only 
a floating point subtraction, e.g. is x > xmax ? 

top view 



Polygon Clipping 
•  Not as simple as line segment clipping 

– Clipping a line segment yields at most one line 
segment 

– Clipping a polygon can yield multiple polygons 

•  However, clipping a convex polygon can 
yield at most one other polygon 



Tessellation and Convexity 

• One strategy is to replace nonconvex (concave) 
polygons with a set of triangular polygons (a 
tessellation) 

• Also makes fill easier 
• Tessellation code in GLU library 



Clipping as a Black Box 
•  Can consider line segment clipping as a 

process that takes in two vertices and 
produces either no vertices or the vertices 
of a clipped line segment 



Pipeline Clipping of Line 
Segments 

•  Clipping against each side of window is 
independent of other sides 
– Can use four independent clippers in a 

pipeline 



Pipeline Clipping of 
Polygons 

• Three dimensions: add front and back clippers 
• Strategy used in SGI Geometry Engine 
• Small increase in latency 



Bounding Boxes 
•  Rather than doing clipping on a complex 

polygon, we can use an axis-aligned bounding 
box or extent 
– Smallest rectangle aligned with axes that 

encloses the polygon 
– Simple to compute: max and min of x and y 



Bounding boxes 
Can usually determine accept/reject based 

only on bounding box 

reject 

accept 
requires detailed 
    clipping 



Clipping and Visibility 

•  Clipping has much in common with 
hidden-surface removal 

•  In both cases, we are trying to remove 
objects that are not visible to the camera 

•  Often we can use visibility or occlusion 
testing early in the process to eliminate as 
many polygons as possible before going 
through the entire pipeline 



Hidden Surface Removal 

• Object-space approach: use pairwise 
testing between polygons (objects) 

• Worst case complexity O(n2) for n 
polygons 

partially obscuring can draw independently 



Image Space Approach 
•  Look at each projector (nm for an n x m 

frame buffer) and find closest of k 
polygons 

•  Complexity O(nmk) 
•  Ray tracing  
•  z-buffer 



Visible Surface Algorithms 

Roberts ‘63            Warnock ‘68  Watkins ‘70  Ray Casting ~‘71 

Complexity grows O(n2) 
(n=number of objects) 

Complexity ~ visual complexity 
Bounded by sorting cost O(n log n) 

Object or 
Edge-Edge 
comparisons 

Image space 
(pixel) comparisons 



Polyhedral Object Model 
Assumptions 

•  Clip geometry to view volume. 
•  Planar polygon faces (convex or concave). 
•  Consistent edge traversal order -- to 

establish uniform notion of inside and outside. 
– Surface normal points outward in a right-

handed world modeling coordinate 
system. 

–  In GL, make sure you list the vertices in a 
consistent order (all clockwise or 
counterclockwise (default) when viewed 
from outside). 



Polygon Model Conceptualization 



                                   ATTRIBUTES: 
 name = ‘floor’, normal = (0, 0, -1), color = (R=0.1, G=0.1, B=0.1), 
fill = yes, edge-color = (R=1, G=1, B=1), ... 

A Polygonal Model 

X 

Y 

Z 

1 
5 

10 

6 

2 

3 

4 

8 

9 7 

   POINTS 
P1 = (1, 2, 0) 
P2 = (1, 2, 3) 
P3 = (0, 2, 5) 
P4 = (-1, 2, 3) 
P5 = (-1, 2, 0) 
P6 = (1, -2, 0) 
P7 = (1, -2, 3) 
P8 = (0, -2, 5) 
P9 = (-1, -2, 3) 
P10 = (-1, -2, 0) 

POLYGONS 
P1 P5 P4 P3 P2 
P6 P7 P8 P9 P10 
P1 P2 P7 P6 
P2 P3 P8 P7 
P3 P4 P9 P8 
P4 P5 P10 P9 
P1 P6 P10 P5 



Back Face Cull 
•  glEnable(GL_CULL_FACE); 
•  Throw out polygons facing away from eye -- that 

is, any polygon with a BACK-facing normal: 



Back Face Cull 
•  Only FRONT-facing ones left to process 

further. 

THIS IS ONLY SUFFICIENT AS A VISIBLE SURFACE DISPLAY 
FOR A SCENE CONSISTING OF A SINGLE CONVEX 

POLYHEDRON 



Depth or Z-Buffer 

•  Each pixel stores COLOR and DEPTH. 

•  Algorithm: 
Initialize all elements of buffer (COLOR(row, col), 

DEPTH(row, col)) to (background-color, 
maximum-depth); 

FOR EACH polygon: 
Rasterize polygon to frame; 
FOR EACH pixel center (x, y) that is covered: 

IF polygon depth at (x, y) < DEPTH(x, y)  
THEN COLOR(x, y) := polygon color at (x, y) 
  AND DEPTH(x, y) := polygon depth at (x, y) 



Depth Buffer Operation 

Frame Depth 

Initialize (“New Frame”) 
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Depth Buffer Operation – First 
Polygon 

Frame Depth 

Pink Triangle -- depths computed at pixel centers 
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Depth Buffer Operation -- First 
Polygon 

Frame Depth 

Pink Triangle -- pixel values assigned 

∞   

∞   ∞   

∞   ∞   ∞   

∞   ∞   

∞   
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Depth Buffer Operation – Second 
Polygon 

Frame Depth 

Green Rectangle -- depths computed at pixel centers 
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∞   ∞   

∞   ∞   

∞   

∞   ∞   

24 

26 

28 

10 

9 

9 

8 

7 8 

7 6 



Depth Buffer Operation – Second 
Polygon 

Frame Depth 

Green Rectangle -- pixel values assigned:  NOTE REPLACEMENTS! 
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Depth Buffer Operation – Third 
Polygon 

Frame Depth 

∞   

∞   ∞   
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24 
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Blue Pentagon -- depths computed at pixel centers 

72 

75 

68 not stored 

71 not 
 stored 



Depth Buffer Operation – Third 
Polygon 

Frame Depth 

∞   
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∞   ∞   

∞   

∞   

24 
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Blue Pentagon -- pixel values assigned:  NOTE ‘GOES BEHIND’! 



Static Screen Subdivision 
•  Use smaller depth buffer and repeat 

multiple times 

1/16th size 
Depth buffer 



Adaptive Screen Subdivision 

•  Subdivide frame buffer into smaller chunks in 
detail areas. 

•  Implement as a recursive algorithm -- 
Warnock. 
–  If frame area is simple, then just draw it. 
–  If complex, then subdivide into quadrants 

and recurse. 
•  Simple = all background 

   covered entirely by one polygon 
                  split into two regions by one polygon 

  edge 



Warnock’s Algorithm: Adaptive 
Screen Subdivision 

Neat algorithm, but slow because recursion gets deep at many edges. 



Static Screen Subdivision: Strips 
•  Use depth buffer consisting of a number of 

scan lines: 

Advantage is that image is created in full width strips, top to bottom. 



Static Screen Subdivision: Scan-
Lines 
•  In the limit, the strip can be a single scan-line. 
•  All polygons need be processed for each scan-

line! 

Watkins came up with a data structure that avoided this overhead. 



Scan-Line Algorithm Definitions 
•  Scan-Plane : The projection of the scan line 

into the world. 
•  Edge : Line between two polygon vertices. 
•  Active Edge : An edge intersected by the 

scan-plane. 
•  Segment : Portion of a polygon between two 

active edges. 



Scan-Line Algorithm Definitions 

screen segment 

scan-plane 

polygon 

projection of active segment onto scan-line 

active edge 

active edge 

eye 

scan-line 



Scan-Line Algorithm Overview 

•  For each new image: vertically sort all 
polygon edges by ys coordinate. Use a 
bucket sort with one bucket per scan-
line of vertical resolution. Within the 
edge list, sort by xs : 

…
 

0 
1 

1022 
1023 

edge edge edge … 
… 

… 
… 



For each new image... 
•  For each new scan-line: Advance the active scan-

line downward from the top.  At each scan-line 
generate the active edge list based on additions, 
deletions, and modifications to the edge blocks 
already stored in that bucket. 

•  Let’s do an example with 10 scan-lines and just 2 
triangle polygons called T and P: 
– T has three edges T1, T2, and T3 
– P has three edges P1, P2, and P3 



Initial State of Scan-Line Buckets 
(y-x sort) 

T P 

0 
1 

3 
4 

2 

5 
6 

8 
9 

7 

(Left-Right keeps 
track of which side 
the edge bounds.) 

T1 

T1-left 

T2 

T2-left 

T3 

T3-right 

P1 

P1-left 

P2 

P2-left 
P3 

P3-right 



For each Scan-Line, Build the 
Active Edge List 

•  No additions 
•  No deletions 
•  No updates 

0 

Scan-line 0 



For each Scan-Line, Build the 
Active Edge List 

T3-right 1 

Scan-line 1 

•  2 additions 
•  No deletions 
•  No updates 

T1-left 

New New 



For each Scan-Line, Build the 
Active Edge List 

T3-right 2 

Scan-line 2 

•  No additions 
•  No deletions 
•  2 updates 

Update x Update x 

T1-left 



For each Scan-Line, Build the 
Active Edge List 

T3-right 3 

Scan-line 3 

•  2 additions 
•  No deletions 
•  2 updates 

Update x Update x 

P1-left P3-right T1-left 

New New 



For each Scan-Line, Build the 
Active Edge List 

P1-left 4 

Scan-line 4 

•  1 addition 
•  1 deletion 
•  3 updates 

Update x Update x 

T3-right P3-right 

Update x 

T2-left 

Note that these two blocks are 
re-sorted to maintain x order. 

New 



For each Scan-Line, Build the 
Active Edge List 

T2-left 5 

Scan-line 5 

•  No additions 
•  No deletions 
•  4 updates 

Update x Update x 

T3-right P3-right P1-left 

Update x Update x 

Note that these two blocks are 
re-sorted to maintain x order. 



For each Scan-Line, Build the 
Active Edge List 

T2-left 6 

Scan-line 6 

•  No additions 
•  No deletions 
•  4 updates 

Update x Update x 

T3-right P3-right P1-left 

Update x Update x 

No re-sorting is needed. 



For each Scan-Line, Build the 
Active Edge List 

P3-right 7 

Scan-line 7 

•  1 addition 
•  3 deletions 
•  1 update 

New Update x 

P2-left 



For each Scan-Line, Build the 
Active Edge List 

P3-right 8 

Scan-line 8 

•  No additions 
•  No deletions 
•  2 updates 

Update x Update x 

P2-left 



For each Scan-Line, Build the 
Active Edge List 

9 

Scan-line 9 

•  No additions 
•  2 deletions 
•  No updates 



Generate the Segment List 

•  For each scan line: scan the active 
scan-line left to right to determine 
visible segments or segment 
fragments, based on depth (smallest z) 
comparisons. 



For each scan-line... 

T2-left 6 T3-right P3-right P1-left 

z 



Painter’s Algorithm 

•  Sort polygons on distance from viewer. 
•  Rasterize polygons into frame buffer  in 

sorted order from furthest to closest. 

•  Doesn’t always work, why do it? 
– Sorting is done prior to rendering. 
– No extra depth buffer memory or pixel 

depth checking (i.e., no special hardware 
needed –this was before OpenGL cards…) 



Painter’s Example -- House 



Exact Algorithm -- Atherton and 
Weiler 

•  Screen subdivision by projected polygon 
outlines. 

•  Uses each polygon as a cookie-cutter on 
remainder of scene. 

•  Within each cookie-cutter polygon: 
  if remainder of scene is behind cookie-

cutter polygon, then draw the cookie-cutter 
polygon 

  else re-enter the algorithm with another 
polygon as the cookie-cutter. 



Clipping a Polygon with ClipPoly 

Outside 
fragments 

Append these to OutList 

Inside 
fragments 

ClipPoly 
Poly 

Projected clip lines 



Clipping a Polygon with ClipPoly 

Clip to plane of ClipPoly (yields Nil) 

Append to InList (Nil) 

Poly 

Projected clip lines 

Inside 
fragments Poof! 

Outside 
fragments 

Append these to OutList 

ClipPoly 



Clipping a Penetrating Polygon 
with ClipPoly 

ClipPoly 
Poly 

Outside 
fragments 

Append these to OutList 

Inside 
fragments 

Projected clip lines 



Clipping a Penetrating Polygon 
with ClipPoly 

ClipPoly 
Poly 

Clip to plane of ClipPoly 

Append this fragment to InList 

Inside 
fragments 

Outside 
fragments 

Append these to OutList 

Projected clip lines 



House Example 

ClipPoly Inside fragments Draw result 



House Example 

ClipPoly Inside fragments Draw result 



House Example 

ClipPoly Inside fragments Draw result 



Pre-Visibility Culling 

•  A family of techniques the attempt to 
cull as many invisible polygons BEFORE 
they are even sent into the rendering 
pipeline. 

•  Enhanced rendering performance, e.g., 
for games. 

•  Often combined with binary space 
partitioning 



Binary Space Partitioning 

•  There exist scenes in which visibility can 
be predetermined and is independent of 
view (camera) viewpoint. 

•  Main requirement is linear separability: 
polygons are either on one side of a 
separating plane or another.  

•  Basic idea: compute visibility in advance, 
then use this structure to pre-define the 
display ordering (back to front). 

•  Data structure built is called a binary 
space partition tree or BSP-tree. 



Separating Planes and the 
Viewpoint 

•  Find separating planes (m, n) such that each 
object (A, B, C) is in its own region of space.      

A 

B 

C 

m 

(B, C) > A 
wrt m 

Viewpoint 

n 

B > C 
wrt n 

Therefore  B > C > A 
wrt Viewpoint: m+, n+ 

: m+, n+ 



Repeat for each Region in which 
Viewpoint may Lie 

A 

B 

C 

m 

(B, C) > A 
wrt m 

Viewpoint 

n 

C > B 
wrt n 

Therefore  C > B > A 
wrt Viewpoint: m+, n- 

: m+, n- 



A 

B 

C 

m 

A > (B, C) 
wrt m 

Viewpoint 

n 

B > C 
wrt n 

Therefore  A > B > C 
wrt Viewpoint: m-, n+ 

: m-, n+ 



A 

B 

C 

m 

A > (B, C) 
wrt m 

Viewpoint 

n 

C > B 
wrt n 

Therefore  A > C > B 
wrt Viewpoint: m-, n- 

: m-, n- 



Combine all into a Binary Space 
Partition (BSP) Tree 

m+ m- 

n+ n+ n- 

B > C > A C > B > A A > B > C A > C > B 

So as soon as we compute what sides of the separating planes the 
viewpoint is on, we immediately know the object rendering order 
that guarantees correct visibility. 

n- n- 

m+ 

C > B > A 



Display in Back-to-Front Order 

Order: C > B > A 

A 

B C 

Assume that back faces are culled; 
 A, B, C may even be convex clusters of polygons 



B 

C 

Order: A > C > B 

A 



This is Basically the “DOOM” 
Graphics Engine! 

•  Extend to 3D polygons. 
•  Complex environments are pre-processed 

to create the BSP tree. 
•  In practice, slightly more complicated trees 

are build to allow crossing features (walls). 
•  Use nice textures on surfaces (see this 

later). 

http://symbolcraft.com/pjl/graphics/
bsp/ 



Rasterization 
•  Rasterization (scan conversion) 

– Shade pixels that are inside object specified by 
a set of vertices 
• Line segments 
• Polygons: scan conversion = fill 

•  Shades determined by color, texture, 
shading model 

•  Here we study algorithms for determining 
the correct pixels starting with the vertices 



Scan Conversion of Line Segments 
•  Start with line segment in window 

coordinates with integer values for 
endpoints 

•  Assume implementation has a 
write_pixel function 

y = mx + h 



DDA Algorithm 
•  Digital Differential Analyzer 

– DDA was a mechanical device for numerical 
solution of differential equations 

– Line y=mx+ h satisfies differential equation 
        dy/dx = m = Δy/Δx = y2-y1/x2-x1 

•  Along scan line Δx = 1 

for(x=x1; x<=x2; x++) { 
   y+=m; 
  write_pixel(x, round(y), line_color) 
} 



Problem 
•  DDA = for each x plot pixel at closest y 

– Problems for steep lines 



Using Symmetry 
•  Use for 1 ≥ m ≥ 0 
•  For m > 1, swap role of x and y 

– For each y, plot closest x 



Bresenham’s Algorithm 
• DDA requires one floating point addition per step 
• We can eliminate all fp through Bresenham’s 
algorithm 

• Consider only 1 ≥ m ≥ 0 
– Other cases by symmetry 

• Assume pixel centers are at half integers 
• If we start at a pixel that has been written, there 
are only two candidates for the next pixel to be 
written into the frame buffer 



Candidate Pixels 

1 ≥ m ≥ 0 

last pixel 

candidates 

Note that line could have 
passed through any 
part of this pixel 

-



Decision Variable 

d = Δx(a-b) 

d is an integer 
d < 0 use upper pixel 
d > 0 use lower pixel - 



Incremental Form 
• More efficient if we look at dk, the value of 
the decision variable at x = k 

dk+1= dk –2Δy,   if dk > 0 
dk+1= dk –2(Δy- Δx),   otherwise 

• For each x, we need do only an integer  
addition and a test 
• Single instruction on graphics chips 



Polygon Scan Conversion 
•  Scan Conversion = Fill 
•  How to tell inside from outside 

– Convex easy 
– Nonsimple difficult 
– Odd even test 

• Count edge crossings 

– Winding number 

odd-even fill 



Winding Number 
•  Count clockwise encirclements of point 

•  Alternate definition of inside: inside if 
winding number ≠ 0 

winding number = 2 

winding number = 1 



Filling in the Frame Buffer 
•  Fill at end of pipeline 

– Convex Polygons only 
– Nonconvex polygons assumed to have been 

tessellated 
– Shades (colors) have been computed for 

vertices (Gouraud shading) 
– Combine with z-buffer algorithm 

• March across scan lines interpolating 
shades 

•  Incremental work small 



Using Interpolation 

span 

C1 

C3 

C2 

C5 

C4 
scan line 

C1 C2 C3 specified by glColor or by vertex shading 
C4 determined by interpolating between C1 and C2 
C5 determined by interpolating between C2 and C3 
interpolate between C4 and C5 along span  



Flood Fill 
• Fill can be done recursively if we know a seed 
point located inside (WHITE) 

• Scan convert edges into buffer in edge/inside 
color (BLACK) 

flood_fill(int x, int y) { 
    if(read_pixel(x,y)= = WHITE) 
{ 
       write_pixel(x,y,BLACK); 
       flood_fill(x-1, y); 
       flood_fill(x+1, y); 
       flood_fill(x, y+1); 
       flood_fill(x, y-1); 
    }    
} 



Scan Line Fill  
• Can also fill by maintaining a data structure of all 
intersections of polygons with scan lines 
– Sort by scan line 
– Fill each span 

vertex order generated  
      by vertex list desired order 



Data Structure 



Aliasing 

•  Ideal rasterized line should be 1 pixel 
wide 

•  Choosing best y for each x (or visa 
versa) produces aliased raster lines 



Antialiasing by Area Averaging 
• Color multiple pixels for each x depending on 
coverage by ideal line 

original antialiased 

magnified 



Polygon Aliasing 
•  Aliasing problems can be serious for 

polygons 
– Jaggedness of edges 
– Small polygons neglected 
– Need compositing so color 
of one polygon does not 
totally determine color of 
pixel 

All three polygons should contribute to color 


