
Computer Graphics
From Vertices to Fragments:

Clipping, HSR, Rasterization and Anti-aliasing

Based on slides by Dianna Xu, Bryn Mawr College

Rendering Algorithms

• Rendering a scene with opaque objects
– For every pixel, determine which object
that projects on the pixel is closest to the
viewer and compute the shade of this pixel

– Ray tracing paradigm
– For every object, determine which pixels it
covers and shade these pixels

• Pipeline approach
• Must keep track of depths

Common Tasks
•  Clipping
•  Hidden surface removal
•  Rasterization or scan conversion
•  Antialiasing

Clipping
• 2D against clipping window
• 3D against clipping volume
• Easy for line segments polygons
• Hard for curves and text

– Convert to lines and polygons first

Clipping 2D Line Segments

•  Brute force approach: compute
intersections with all sides of clipping
window
–  Inefficient: one division per intersection

Cohen-Sutherland Algorithm

•  Idea: eliminate as many cases as possible
without computing intersections

•  Start with four lines that determine the
sides of the clipping window

x = xmax x = xmin

y = ymax

y = ymin

The Cases

• Case 1: both endpoints of line segment inside all
four lines

– Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on
same side of a line

– Discard (reject) the line segment

x = xmax x = xmin

y = ymax

y = ymin

The Cases
•  Case 3: One endpoint inside, one outside

– Must do at least one intersection
•  Case 4: Both outside

– May have part inside
– Must do at least one intersection

x = xmax x = xmin

y = ymax

Defining Outcodes

• For each endpoint, define an outcode

• Outcodes divide space into 9 regions
• Computation of outcode requires at most 4
subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise

Using Outcodes

•  Consider the 5 cases below
•  AB: outcode(A) = outcode(B) = 0

– Accept line segment

Using Outcodes
•  CD: outcode (C) = 0, outcode(D) ≠ 0

– Compute intersection
– Location of 1 in outcode(D) determines which

edge to intersect with
– Note if there were a segment from C to a point

in a region with 2 ones in outcode, we might
have to do two intersections

Using Outcodes

•  EF: outcode(E) & outcode(F) (bitwise) != 0
– Both outcodes have a 1 bit in the same place
– Line segment is outside of corresponding

side of clipping window
– reject

Using Outcodes
•  GH and IJ: same outcodes, neither zero but

logical AND yields zero
•  Shorten line segment by intersecting with

one of sides of window
•  Compute outcode of intersection (new

endpoint of shortened line segment)
•  Re-execute algorithm

Cohen Sutherland in 3D
• Use 6-bit outcodes
• When needed, clip line segment against planes

Liang-Barsky Clipping
• Consider the parametric form of a line segment

• We can distinguish between the cases by looking at the
ordering of the values of α where the line determined by
the line segment crosses the lines that determine the
window

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1

p2

Liang-Barsky Clipping
•  In (a): α4 > α3 > α2 > α1

–  Intersect right, top, left, bottom: shorten
•  In (b): α4 > α2 > α3 > α1

–  Intersect right, left, top, bottom: reject

Advantages
•  Can accept/reject as easily as with Cohen-

Sutherland
•  Using values of α, we do not have to use

algorithm recursively as with C-S
•  Extends to 3D

Clipping and Normalization

•  General clipping in 3D requires
intersection of line segments against
arbitrary plane

•  Example: oblique view

Plane-Line Intersections

Normalized Form

before normalization after normalization

Normalization is part of viewing (pre clipping)
but after normalization, we clip against sides of
right parallelepiped

Typical intersection calculation now requires only
a floating point subtraction, e.g. is x > xmax ?

top view

Polygon Clipping
•  Not as simple as line segment clipping

– Clipping a line segment yields at most one line
segment

– Clipping a polygon can yield multiple polygons

•  However, clipping a convex polygon can
yield at most one other polygon

Tessellation and Convexity

• One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

• Also makes fill easier
• Tessellation code in GLU library

Clipping as a Black Box
•  Can consider line segment clipping as a

process that takes in two vertices and
produces either no vertices or the vertices
of a clipped line segment

Pipeline Clipping of Line
Segments

•  Clipping against each side of window is
independent of other sides
– Can use four independent clippers in a

pipeline

Pipeline Clipping of
Polygons

• Three dimensions: add front and back clippers
• Strategy used in SGI Geometry Engine
• Small increase in latency

Bounding Boxes
•  Rather than doing clipping on a complex

polygon, we can use an axis-aligned bounding
box or extent
– Smallest rectangle aligned with axes that

encloses the polygon
– Simple to compute: max and min of x and y

Bounding boxes
Can usually determine accept/reject based

only on bounding box

reject

accept
requires detailed
 clipping

Clipping and Visibility

•  Clipping has much in common with
hidden-surface removal

•  In both cases, we are trying to remove
objects that are not visible to the camera

•  Often we can use visibility or occlusion
testing early in the process to eliminate as
many polygons as possible before going
through the entire pipeline

Hidden Surface Removal

• Object-space approach: use pairwise
testing between polygons (objects)

• Worst case complexity O(n2) for n
polygons

partially obscuring can draw independently

Image Space Approach
•  Look at each projector (nm for an n x m

frame buffer) and find closest of k
polygons

•  Complexity O(nmk)
•  Ray tracing
•  z-buffer

Visible Surface Algorithms

Roberts ‘63 Warnock ‘68 Watkins ‘70 Ray Casting ~‘71

Complexity grows O(n2)
(n=number of objects)

Complexity ~ visual complexity
Bounded by sorting cost O(n log n)

Object or
Edge-Edge
comparisons

Image space
(pixel) comparisons

Polyhedral Object Model
Assumptions

•  Clip geometry to view volume.
•  Planar polygon faces (convex or concave).
•  Consistent edge traversal order -- to

establish uniform notion of inside and outside.
– Surface normal points outward in a right-

handed world modeling coordinate
system.

–  In GL, make sure you list the vertices in a
consistent order (all clockwise or
counterclockwise (default) when viewed
from outside).

Polygon Model Conceptualization

 ATTRIBUTES:
 name = ‘floor’, normal = (0, 0, -1), color = (R=0.1, G=0.1, B=0.1),
fill = yes, edge-color = (R=1, G=1, B=1), ...

A Polygonal Model

X

Y

Z

1
5

10

6

2

3

4

8

9 7

 POINTS
P1 = (1, 2, 0)
P2 = (1, 2, 3)
P3 = (0, 2, 5)
P4 = (-1, 2, 3)
P5 = (-1, 2, 0)
P6 = (1, -2, 0)
P7 = (1, -2, 3)
P8 = (0, -2, 5)
P9 = (-1, -2, 3)
P10 = (-1, -2, 0)

POLYGONS
P1 P5 P4 P3 P2
P6 P7 P8 P9 P10
P1 P2 P7 P6
P2 P3 P8 P7
P3 P4 P9 P8
P4 P5 P10 P9
P1 P6 P10 P5

Back Face Cull
•  glEnable(GL_CULL_FACE);
•  Throw out polygons facing away from eye -- that

is, any polygon with a BACK-facing normal:

Back Face Cull
•  Only FRONT-facing ones left to process

further.

THIS IS ONLY SUFFICIENT AS A VISIBLE SURFACE DISPLAY
FOR A SCENE CONSISTING OF A SINGLE CONVEX

POLYHEDRON

Depth or Z-Buffer

•  Each pixel stores COLOR and DEPTH.

•  Algorithm:
Initialize all elements of buffer (COLOR(row, col),

DEPTH(row, col)) to (background-color,
maximum-depth);

FOR EACH polygon:
Rasterize polygon to frame;
FOR EACH pixel center (x, y) that is covered:

IF polygon depth at (x, y) < DEPTH(x, y)
THEN COLOR(x, y) := polygon color at (x, y)
 AND DEPTH(x, y) := polygon depth at (x, y)

Depth Buffer Operation

Frame Depth

Initialize (“New Frame”)

∞ 

∞  ∞ 

∞  ∞  ∞  ∞  ∞ 

∞  ∞  ∞  ∞  ∞ 

∞ 

∞  ∞ 

∞  ∞ 

∞ 

∞ 

Depth Buffer Operation – First
Polygon

Frame Depth

Pink Triangle -- depths computed at pixel centers

∞ 

∞  ∞ 

∞  ∞  ∞ 

∞  ∞ 

∞ 

∞ 

∞  ∞ 

∞ 

∞ 

24

26

28

27

29 30

Depth Buffer Operation -- First
Polygon

Frame Depth

Pink Triangle -- pixel values assigned

∞ 

∞  ∞ 

∞  ∞  ∞ 

∞  ∞ 

∞ 

∞ 

∞  ∞ 

∞ 

∞ 

24

26

28

27

29 30

Depth Buffer Operation – Second
Polygon

Frame Depth

Green Rectangle -- depths computed at pixel centers

∞ 

∞ 

∞  ∞ 

∞  ∞ 

∞ 

∞  ∞ 

24

26

28

10

9

9

8

7 8

7 6

Depth Buffer Operation – Second
Polygon

Frame Depth

Green Rectangle -- pixel values assigned: NOTE REPLACEMENTS!

∞ 

∞ 

∞  ∞ 

∞  ∞ 

∞ 

∞  ∞ 

24

26

28

10

9

9

8

7 8

7 6

Depth Buffer Operation – Third
Polygon

Frame Depth

∞ 

∞  ∞ 

∞  ∞ 

∞ 

∞ 

24

26

28

10

9

9

8

7 8

7 6

Blue Pentagon -- depths computed at pixel centers

72

75

68 not stored

71 not
 stored

Depth Buffer Operation – Third
Polygon

Frame Depth

∞ 

∞  ∞ 

∞  ∞ 

∞ 

∞ 

24

26

28

10

9

9

8

7 8

7 6

72

75

Blue Pentagon -- pixel values assigned: NOTE ‘GOES BEHIND’!

Static Screen Subdivision
•  Use smaller depth buffer and repeat

multiple times

1/16th size
Depth buffer

Adaptive Screen Subdivision

•  Subdivide frame buffer into smaller chunks in
detail areas.

•  Implement as a recursive algorithm --
Warnock.
–  If frame area is simple, then just draw it.
–  If complex, then subdivide into quadrants

and recurse.
•  Simple = all background

 covered entirely by one polygon
 split into two regions by one polygon

 edge

Warnock’s Algorithm: Adaptive
Screen Subdivision

Neat algorithm, but slow because recursion gets deep at many edges.

Static Screen Subdivision: Strips
•  Use depth buffer consisting of a number of

scan lines:

Advantage is that image is created in full width strips, top to bottom.

Static Screen Subdivision: Scan-
Lines
•  In the limit, the strip can be a single scan-line.
•  All polygons need be processed for each scan-

line!

Watkins came up with a data structure that avoided this overhead.

Scan-Line Algorithm Definitions
•  Scan-Plane : The projection of the scan line

into the world.
•  Edge : Line between two polygon vertices.
•  Active Edge : An edge intersected by the

scan-plane.
•  Segment : Portion of a polygon between two

active edges.

Scan-Line Algorithm Definitions

screen segment

scan-plane

polygon

projection of active segment onto scan-line

active edge

active edge

eye

scan-line

Scan-Line Algorithm Overview

•  For each new image: vertically sort all
polygon edges by ys coordinate. Use a
bucket sort with one bucket per scan-
line of vertical resolution. Within the
edge list, sort by xs :

…

0
1

1022
1023

edge edge edge …
…

…
…

For each new image...
•  For each new scan-line: Advance the active scan-

line downward from the top. At each scan-line
generate the active edge list based on additions,
deletions, and modifications to the edge blocks
already stored in that bucket.

•  Let’s do an example with 10 scan-lines and just 2
triangle polygons called T and P:
– T has three edges T1, T2, and T3
– P has three edges P1, P2, and P3

Initial State of Scan-Line Buckets
(y-x sort)

T P

0
1

3
4

2

5
6

8
9

7

(Left-Right keeps
track of which side
the edge bounds.)

T1

T1-left

T2

T2-left

T3

T3-right

P1

P1-left

P2

P2-left
P3

P3-right

For each Scan-Line, Build the
Active Edge List

•  No additions
•  No deletions
•  No updates

0

Scan-line 0

For each Scan-Line, Build the
Active Edge List

T3-right 1

Scan-line 1

•  2 additions
•  No deletions
•  No updates

T1-left

New New

For each Scan-Line, Build the
Active Edge List

T3-right 2

Scan-line 2

•  No additions
•  No deletions
•  2 updates

Update x Update x

T1-left

For each Scan-Line, Build the
Active Edge List

T3-right 3

Scan-line 3

•  2 additions
•  No deletions
•  2 updates

Update x Update x

P1-left P3-right T1-left

New New

For each Scan-Line, Build the
Active Edge List

P1-left 4

Scan-line 4

•  1 addition
•  1 deletion
•  3 updates

Update x Update x

T3-right P3-right

Update x

T2-left

Note that these two blocks are
re-sorted to maintain x order.

New

For each Scan-Line, Build the
Active Edge List

T2-left 5

Scan-line 5

•  No additions
•  No deletions
•  4 updates

Update x Update x

T3-right P3-right P1-left

Update x Update x

Note that these two blocks are
re-sorted to maintain x order.

For each Scan-Line, Build the
Active Edge List

T2-left 6

Scan-line 6

•  No additions
•  No deletions
•  4 updates

Update x Update x

T3-right P3-right P1-left

Update x Update x

No re-sorting is needed.

For each Scan-Line, Build the
Active Edge List

P3-right 7

Scan-line 7

•  1 addition
•  3 deletions
•  1 update

New Update x

P2-left

For each Scan-Line, Build the
Active Edge List

P3-right 8

Scan-line 8

•  No additions
•  No deletions
•  2 updates

Update x Update x

P2-left

For each Scan-Line, Build the
Active Edge List

9

Scan-line 9

•  No additions
•  2 deletions
•  No updates

Generate the Segment List

•  For each scan line: scan the active
scan-line left to right to determine
visible segments or segment
fragments, based on depth (smallest z)
comparisons.

For each scan-line...

T2-left 6 T3-right P3-right P1-left

z

Painter’s Algorithm

•  Sort polygons on distance from viewer.
•  Rasterize polygons into frame buffer in

sorted order from furthest to closest.

•  Doesn’t always work, why do it?
– Sorting is done prior to rendering.
– No extra depth buffer memory or pixel

depth checking (i.e., no special hardware
needed –this was before OpenGL cards…)

Painter’s Example -- House

Exact Algorithm -- Atherton and
Weiler

•  Screen subdivision by projected polygon
outlines.

•  Uses each polygon as a cookie-cutter on
remainder of scene.

•  Within each cookie-cutter polygon:
 if remainder of scene is behind cookie-

cutter polygon, then draw the cookie-cutter
polygon

 else re-enter the algorithm with another
polygon as the cookie-cutter.

Clipping a Polygon with ClipPoly

Outside
fragments

Append these to OutList

Inside
fragments

ClipPoly
Poly

Projected clip lines

Clipping a Polygon with ClipPoly

Clip to plane of ClipPoly (yields Nil)

Append to InList (Nil)

Poly

Projected clip lines

Inside
fragments Poof!

Outside
fragments

Append these to OutList

ClipPoly

Clipping a Penetrating Polygon
with ClipPoly

ClipPoly
Poly

Outside
fragments

Append these to OutList

Inside
fragments

Projected clip lines

Clipping a Penetrating Polygon
with ClipPoly

ClipPoly
Poly

Clip to plane of ClipPoly

Append this fragment to InList

Inside
fragments

Outside
fragments

Append these to OutList

Projected clip lines

House Example

ClipPoly Inside fragments Draw result

House Example

ClipPoly Inside fragments Draw result

House Example

ClipPoly Inside fragments Draw result

Pre-Visibility Culling

•  A family of techniques the attempt to
cull as many invisible polygons BEFORE
they are even sent into the rendering
pipeline.

•  Enhanced rendering performance, e.g.,
for games.

•  Often combined with binary space
partitioning

Binary Space Partitioning

•  There exist scenes in which visibility can
be predetermined and is independent of
view (camera) viewpoint.

•  Main requirement is linear separability:
polygons are either on one side of a
separating plane or another.

•  Basic idea: compute visibility in advance,
then use this structure to pre-define the
display ordering (back to front).

•  Data structure built is called a binary
space partition tree or BSP-tree.

Separating Planes and the
Viewpoint

•  Find separating planes (m, n) such that each
object (A, B, C) is in its own region of space.

A

B

C

m

(B, C) > A
wrt m

Viewpoint

n

B > C
wrt n

Therefore B > C > A
wrt Viewpoint: m+, n+

: m+, n+

Repeat for each Region in which
Viewpoint may Lie

A

B

C

m

(B, C) > A
wrt m

Viewpoint

n

C > B
wrt n

Therefore C > B > A
wrt Viewpoint: m+, n-

: m+, n-

A

B

C

m

A > (B, C)
wrt m

Viewpoint

n

B > C
wrt n

Therefore A > B > C
wrt Viewpoint: m-, n+

: m-, n+

A

B

C

m

A > (B, C)
wrt m

Viewpoint

n

C > B
wrt n

Therefore A > C > B
wrt Viewpoint: m-, n-

: m-, n-

Combine all into a Binary Space
Partition (BSP) Tree

m+ m-

n+ n+ n-

B > C > A C > B > A A > B > C A > C > B

So as soon as we compute what sides of the separating planes the
viewpoint is on, we immediately know the object rendering order
that guarantees correct visibility.

n- n-

m+

C > B > A

Display in Back-to-Front Order

Order: C > B > A

A

B C

Assume that back faces are culled;
 A, B, C may even be convex clusters of polygons

B

C

Order: A > C > B

A

This is Basically the “DOOM”
Graphics Engine!

•  Extend to 3D polygons.
•  Complex environments are pre-processed

to create the BSP tree.
•  In practice, slightly more complicated trees

are build to allow crossing features (walls).
•  Use nice textures on surfaces (see this

later).

http://symbolcraft.com/pjl/graphics/
bsp/

Rasterization
•  Rasterization (scan conversion)

– Shade pixels that are inside object specified by
a set of vertices
• Line segments
• Polygons: scan conversion = fill

•  Shades determined by color, texture,
shading model

•  Here we study algorithms for determining
the correct pixels starting with the vertices

Scan Conversion of Line Segments
•  Start with line segment in window

coordinates with integer values for
endpoints

•  Assume implementation has a
write_pixel function

y = mx + h

DDA Algorithm
•  Digital Differential Analyzer

– DDA was a mechanical device for numerical
solution of differential equations

– Line y=mx+ h satisfies differential equation
 dy/dx = m = Δy/Δx = y2-y1/x2-x1

•  Along scan line Δx = 1

for(x=x1; x<=x2; x++) {
 y+=m;
 write_pixel(x, round(y), line_color)
}

Problem
•  DDA = for each x plot pixel at closest y

– Problems for steep lines

Using Symmetry
•  Use for 1 ≥ m ≥ 0
•  For m > 1, swap role of x and y

– For each y, plot closest x

Bresenham’s Algorithm
• DDA requires one floating point addition per step
• We can eliminate all fp through Bresenham’s
algorithm

• Consider only 1 ≥ m ≥ 0
– Other cases by symmetry

• Assume pixel centers are at half integers
• If we start at a pixel that has been written, there
are only two candidates for the next pixel to be
written into the frame buffer

Candidate Pixels

1 ≥ m ≥ 0

last pixel

candidates

Note that line could have
passed through any
part of this pixel

-

Decision Variable

d = Δx(a-b)

d is an integer
d < 0 use upper pixel
d > 0 use lower pixel -

Incremental Form
• More efficient if we look at dk, the value of
the decision variable at x = k

dk+1= dk –2Δy, if dk > 0
dk+1= dk –2(Δy- Δx), otherwise

• For each x, we need do only an integer
addition and a test
• Single instruction on graphics chips

Polygon Scan Conversion
•  Scan Conversion = Fill
•  How to tell inside from outside

– Convex easy
– Nonsimple difficult
– Odd even test

• Count edge crossings

– Winding number

odd-even fill

Winding Number
•  Count clockwise encirclements of point

•  Alternate definition of inside: inside if
winding number ≠ 0

winding number = 2

winding number = 1

Filling in the Frame Buffer
•  Fill at end of pipeline

– Convex Polygons only
– Nonconvex polygons assumed to have been

tessellated
– Shades (colors) have been computed for

vertices (Gouraud shading)
– Combine with z-buffer algorithm

• March across scan lines interpolating
shades

•  Incremental work small

Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span

Flood Fill
• Fill can be done recursively if we know a seed
point located inside (WHITE)

• Scan convert edges into buffer in edge/inside
color (BLACK)

flood_fill(int x, int y) {
 if(read_pixel(x,y)= = WHITE)
{
 write_pixel(x,y,BLACK);
 flood_fill(x-1, y);
 flood_fill(x+1, y);
 flood_fill(x, y+1);
 flood_fill(x, y-1);
 }
}

Scan Line Fill
• Can also fill by maintaining a data structure of all
intersections of polygons with scan lines
– Sort by scan line
– Fill each span

vertex order generated
 by vertex list desired order

Data Structure

Aliasing

•  Ideal rasterized line should be 1 pixel
wide

•  Choosing best y for each x (or visa
versa) produces aliased raster lines

Antialiasing by Area Averaging
• Color multiple pixels for each x depending on
coverage by ideal line

original antialiased

magnified

Polygon Aliasing
•  Aliasing problems can be serious for

polygons
– Jaggedness of edges
– Small polygons neglected
– Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color

