Computer Graphi '

Viewing Transformations and P

Based on slides by Dianna Xu, Bryn Mawr College

Parallel Projection Clippin
Volume

* View Volume determined by the
of projection and the window

Oblique Perpendicular

adl u

Parallel Projection View V
* View Volume is now a parallelopip

The Synthetic Camera

Translated via CP changes.
Rotated via UP changes.
Redirected via View Plane Normal ¢
(e.g. panning).

Zoom via changes in View Distance

, UP

NORM

e

I

CP

)

View Distance

l 3D WORLD

Modeling transformation 3 D Vi EWi n g P

3D

Viewing transformation

World
3Deyd» Clipping transformation
3D clipl_’ Cllp
(44 3D CliJ . .
Standard —| Projection (homogeneous division)

View

29 .
Volume D L Image transformation

3D

NDC ‘—’ NDC to physical device
coordinates

2D SCREEN

Transform World Coordinat
Eye Coordinates |

Approximate steps:
« Put eye (center of projection) at ((
0). |
* Make X point to right.
 Make Y point up. _
 Make Z point forward (away from eye in
depth). |

* (This is now a left-handed coordinate
system!)

View direction

Eye = center of projecti

World to Eye Transformat
Translate eye to (0, 0, 0)

World to Eye Transformat
Align view direction with

World to Eye Transformat
Align VUP direction with

l 3D WORLD

Modeling transformation

3D Viewing P ne

3D
World)

Viewing transformation

3D eyJ Clipping transformation

Clip

“Standard

Projection (homogeneous division)

View
Volume”

D .
13\IDC -y Image transformation

3D

NDC ‘—’ NDC to physical device
coordinates

2D SCREEN

On to the Clipping Transfor

* It remains to do the transformations t
these coordinates into the clipping
coordinate system

 We have to shear it to get it upright

Shear Layout

REF

VIEWD

Notice that the view pyramid 1s not a right pyramid.
We must make it so with the shear transformation

Scaling to Standard View '

Yct Z~=VIEWD-PR,

Z.~FRONT-PR

adles &

— 7Z.~BACK-PR,

ZC

The Standard View Volum
Perspective Case

Yy
plane Z-= Y (-1, LAl

(1, A
plane Z-= X&'

back Z. =1

Z-~FRONT-PRy (1,-1,)T

BACK-PRy,

Scaling to Standard View
Volume: Parallel
Yo ot

FRONT-VIEWD BACK-VIEWD

adl u

The Standard View Volum
Parallel: The Unit Cube [0,

Ye 0,1, 1)
(1,1, 0)Y
front (1, 188
\4 N
back Z. =1
\ (19 Oa I)T
Xe

l 3D WORLD

Modeling transformation 3 D Vi EWi ng P

3D
World)

Viewing transformation

3D eny_> Clipping transformation Perspective Transformation

3D CliJ_’ Cllp

“Standard ", Projection (homogeneous division)

View

29 .
Volume D L Image transformation

3D

NDC ‘—’ NDC to physical device
coordinates

2D SCREEN

Projections

* The default projection in the eye
frame is orthogonal

* For points within the default view vol

Normalization

* Most graphics systems use view
normalization

— All other views are converted to the defat
view by transformations that determine th
projection matrix

— Allows use of the same pipeline for all views

Homogeneous Coordin

Representation
Xp—X default orthographic projection
Yo7
z,=0 p,= Mp
wp=1

1 0 0 O]

O 1 0 O

M =
0O 0 0 O
0O 0 O 1

In practice, we can let M =1 and set

the z term to zero later

Simple Perspective

» Center of projection at the origin
* Projection planez=d,d<0

L

(x, y, z)
L

(x50 Vo0 Z,)
- X

Perspective Equations

Consider top and side views

L

x, z)

x_,d
(P) Z=d x (yp'd)

z=d

Normalize Homogeneous
Coordinates (Perspective

~~

=
I

<
|

~~

[\] ~
Il
TN 2 e =%

provided w = 0

Returns x” and y’ in range [-1, 1]
8 in range [0, 1]

il &

Homogeneous Coordin
Form

1 0
consider q = Mp where M=l0 1
0 O
0 0 1/
X i
)
q= Dy
~ Z
z/d 1

Perspective Division

« However w = 1, so we must divid
to return from homogeneous
coordinates

* This perspective division yields

Ap = ~ Yp~ A z,=d

z/d z/d :
the desired perspective equations

 We will consider the corresponding
clipping volume with the OpenGL
functions

OpenGL Orthogonal Vie

glOrtho(xmin,xmax,ymin,ymax,ne
glOrtho (left,right,bottom, top,

i

View volume

Z=-near

b
\

- X

(x -near)

min’ ymin’

near and far measured from camera

OpenGL Perspective

glFrustum (xmin, xmax,ymin, ymax, ;

Using Field of View

 With glFrustum it is often difficult
the desired view |

e gluPerpective (fovy, aspect, n /
far) often provides a better interface

, «— front plane

— -~

aspect = w/h

fov

Normalization

* Rather than derive a different proje n
matrix for each type of projection? can
convert all projections to orthogonal
projections with the default view volum

» This strategy allows us to use standard
transformations in the pipeline and makes
for efficient clipping

Pipeline View

nonsingula/

-
L4
a
-
» » ’) g
» » - e
v
4

3D — 2D

against default cube

Notes

 We stay in 4D homogeneous
coordinates through both the mo
and projection transformations }
— Both these transformations are nonsingula
— Default to identity matrices (orthogonal
view) |
 Normalization lets us clip against simple
cube regardless of type of projection |

* Delay final projection until end

— Important for hidden-surface removal to
retain depth information as long as possible

iew

Orthogonal Normaliz

glOrtho (left,right,bottom, top,n

normalization = find transformation to co
specified clipping volume to default |

(right,top,-far)

@
(left, bottom,-near) (-1,-1,1)

Orthogonal Matrix

 Two steps

— Move center to origin
T (- (right+left) /2, - (top+bottom) /2, (ne

— Scale to have sides of length 2
S(2/ (right-left) ,2/ (top-bottom) ,2/ (near-far)

2 0 0 _right + left |
right — left right — left

0 2 0 _ top + bottom
P=ST= top — bottom top — bottom
0 0 2 far + near

near — far near — far
0 0 0 1

Final Projection

e Set =0

 Equivalent to the homogeneous coordi
transformation

Morth .

SR> © ©
= o <

o O O -
o o = o

* Hence, general orthogonal projection in 4D is
P=M_,ST

Oblique Projections

 The OpenGL projection function
cannot produce general parallel

projections such as .

 However if we look at the example of
the cube it appears that the cube has
been sheared '

* Oblique Projection = Shear +
Orthogonal Projection

General Shear

Y
A
Back clipping plane
Object
: \ Front clipping plane
Projection plane
N\ poP
X
z
top view "
side view

Shear Matrix
xy shear (z values unchanged)

1 0 -cotf O
H(0,0) = 0O 1 -cote O
00 1 0
00 0
Projection matrix P =M, H(0,0)

General case: P=M,_, STH(0,0)

Equivalency

Effect on Clipping

* The projection matrix P = STH
transforms the original clipping
volume to the default clipping v

Obj ect top view =
/ }(-
far plane \
i z=-1
¢ 1p PINg jear plane) :
volume p distorted object

(projects correctly)

Simple Perspective

Consider a simple perspective with

COP at the origin, the near clipping
z=-1, and a 90 degree field of view

determined by the planes

X=%x7,y==%7

-

] (1,1,-1)

(_]: _]1 _])\

Perspective Matrices

Simple projection matrix in homo
coordinates |

0
0
1

Note that this matrix is independent of th |
far clipping plane

Generalization

after perspective division, the point (x, y, z, 1) goes

X’ =-x/z
y'=yiz
z” = -(a+p/z)

which projects orthogonally to the desired point
regardless of a and f3

R — N

Picking o and

If we pick
near + far
(x —
near - far
8 2near = far
far- near

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mappedtox==1,y==1

Hence the new clipping volume is the default clipping volume

Normalization Transfor

distorted o |
Z= _x projects correctly

\ z-

z— -far \
\(. / e
Z = -near
\)< 2
original cOp / q

clipping original object new clipping
volume volume

OpenGL Perspective

+ glFrustum allows for an asym
viewing frustum (although
gluPerspective does not)

Z=2Z .

/ min

max’ ymax' ch:x) \

(xminf Ymin’ zmox) %)

COP

OpenGL Perspective Matri

 The normalization In glFrustum requires an
initial shear to form a right viewing
pyramid, followed by a scaling to}l’the
normalized perspective volume. Finally,
the perspective matrix results in needi
only a final orthogonal transformation

P =NSH

our previously defined ¢poar and scale
perspective matrix

OpenGL Perspective Matrix

 H (shear): skew the point ((left+right)/
+bottom)/2, -near) to (0, O, -near)

* S (scale): scale the sides to x = +z,

* N (normalization): get the far plan to
and the near plane to z = 1

[—2* near 0 right + left
right — left right — left
0 -2 * near top + bottom

P =NSH = top — bottom top — bottom
0 0 far + near 2 far* near

0

near — far far — near
0 0 -1 0

Why do we do it this way?

* Normalization allows for a single
pipeline for both perspective an?,
orthogonal viewing

 We keep in four dimensional
homogeneous coordinates as long as
possible to retain three-dimensional :
information needed for hidden-surface
removal and shading

* We simplify clipping

View Volume Clipping Limi

Parallel Perspe
Above y>1 y >\
Below y<0 y < -w
Right x> 1 X>WwW
Left x<0 X < -wW
Behind (yon) z>1 zZ >W

In Front (hither) z<0 z<0

A point (x, y, z) 1s in the view volume if and only if it lies
inside these 6 planes.

Recall the Standard View

YcA

Z~FRONT-PRg -1, 1)

BACKsPRy

The Perspective Transforme

(for the Perspective Case ol

 Now that we have a normalized perspec
volume we apply one more matrix to it i
permit simple depth comparisons

10 0 0
0 1 0 0
M = 0 0 1 — Zf ront
1-Zf ront 1-Zf ront
0 0 1 O
 Where is the value of the front clippingz

coordinate after viewing transformation --

What does /// do?

* Notice that [/ does not affect the
coordinates.

sets the homogeneous coordin

e]

is changed to lie in the range [0, 1].
Check: if z = then new = < 0;
if z=1 then new z < 1.

/W Changes Standard Pyra
This...

A :
"l’”T 2.) AN
X

(1,-1, D)

(-1,1, 1)7
(1, 1, 1)

M Creates the Foreshorten
Effect

- Thus /V makes the projectors parz
allowing later depth comparison

<X RER becomes ‘

The Perspective Transform

* Preserves relative depth.
* Preserves linearity (“straightness”™
* Preserves planarity. |
* Produces perspective foreshortening.

« Still permits clipping -- just use W
coordinate.

