
Computer Graphics 
Viewing Transformations and Projection 

Based on slides by Dianna Xu, Bryn Mawr College 



Parallel Projection Clipping View 
Volume 
•  View Volume determined by the direction 

of projection and the window 

Oblique Perpendicular 



Parallel Projection View Volume 
•  View Volume is now a parallelopiped. 



The Synthetic Camera 

•  Translated via CP changes. 
•  Rotated via UP changes. 
•   Redirected via View Plane Normal changes 

(e.g. panning). 
•  Zoom via changes in View Distance 
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3D Viewing Pipeline Modeling transformation 

Clipping transformation 

Clip 

Projection  (homogeneous division) 

Image transformation 

NDC to physical device 
coordinates 
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Viewing transformation 



Transform World Coordinates to 
Eye Coordinates 

Approximate steps: 
•  Put eye (center of projection) at (0, 0, 

0). 
•  Make X point to right. 
•  Make Y point up. 
•  Make Z point forward (away from eye in 

depth). 
•  (This is now a left-handed coordinate 

system!) 



World to Eye Transformation 
START 

X 
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Z 

View direction 

Eye = center of projection 



World to Eye Transformation 
Translate eye to (0, 0, 0) 
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World to Eye Transformation 
Align view direction with +Z 



World to Eye Transformation 
Align VUP direction with +Y 



World to Eye Transformation 
Scale to LH coordinate system 



3D Viewing Pipeline Modeling transformation 

Viewing transformation 

Clipping transformation 

Clip 

Projection  (homogeneous division) 

Image transformation 

NDC to physical device 
coordinates 
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On to the Clipping Transformation 

•  It remains to do the transformations that put 
these coordinates into the clipping 
coordinate system 

•  We have to shear it to get it upright 



Shear Layout 

REF N 

V 

VIEWD 

U 

PR 

PRN 

window 

Notice that the view pyramid is not a right pyramid. 
We must make it so with the shear transformation 



Scaling to Standard View Volume 

window 
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The Standard View Volume for 
Perspective Case 

back: ZC =1 
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Scaling to Standard View 
Volume: Parallel 
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ZC 
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The Standard View Volume for 
Parallel: The Unit Cube [0, 1]3 
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back: ZC =1 

YC 
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3D Viewing Pipeline Modeling transformation 

Viewing transformation 

Clipping transformation 

Clip 

Projection  (homogeneous division) 

Image transformation 

NDC to physical device 
coordinates 
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Perspective Transformation 



Projections 

•  The default projection in the eye (camera) 
frame is orthogonal  

•  For points within the default view volume 

xp = x 
yp = y 
zp = 0 



Normalization 

•  Most graphics systems use view 
normalization 
– All other views are converted to the default 

view by transformations that determine the 
projection matrix 

– Allows use of the same pipeline for all views 



Homogeneous Coordinate 
Representation 

xp = x 
yp = y 
zp = 0 
wp = 1 

pp = Mp 

M =  

In practice, we can let M = I and set  
the z term to zero later 

default orthographic projection 



Simple Perspective 

•  Center of projection at the origin 
•  Projection plane z = d, d < 0 



Perspective Equations 

Consider top and side views 

xp = yp = zp = d 



Normalize Homogeneous 
Coordinates (Perspective Only) 

Returns x’ and y’ in range [-1, 1] 
             z’             in range [0, 1] 



Homogeneous Coordinate 
Form 

M =  
consider q = Mp where 

q = ⇒     p =  



•  However w ≠ 1, so we must divide by w 
to return from homogeneous 
coordinates 

•  This perspective division yields 

 the desired perspective equations  
•  We will consider the corresponding 

clipping volume with the OpenGL 
functions 

Perspective Division 

xp = yp = zp = d 



OpenGL Orthogonal Viewing 

glOrtho(xmin,xmax,ymin,ymax,near,far) 
glOrtho(left,right,bottom,top,near,far) 

near and far measured from camera 



OpenGL Perspective 

glFrustum(xmin,xmax,ymin,ymax,near,far) 



Using Field of View 

•  With glFrustum it is often difficult to get 
the desired view 

•  gluPerpective(fovy, aspect, near, 
far) often provides a better interface 

aspect = w/h 

front plane 



Normalization 

•  Rather than derive a different projection 
matrix for each type of projection, we can 
convert all projections to orthogonal 
projections with the default view volume 

•  This strategy allows us to use standard 
transformations in the pipeline and makes 
for efficient clipping 



Pipeline View 

  modelview 
transformation 

   projection 
transformation 

perspective 
 division 

clipping projection 

nonsingular 
4D → 3D 

against default cube 3D → 2D 



Notes 

•  We stay in 4D homogeneous 
coordinates through both the modelview 
and projection transformations 
– Both these transformations are nonsingular 
– Default to identity matrices (orthogonal 

view) 
•  Normalization lets us clip against simple 

cube regardless of type of projection 
•  Delay final projection until end 

–  Important for hidden-surface removal to 
retain depth information as long as possible  



Orthogonal Normalization 

glOrtho(left,right,bottom,top,near,far) 

normalization ⇒ find transformation to convert 
specified clipping volume to default 



Orthogonal Matrix 

•  Two steps 
– Move center to origin 

T(-(right+left)/2, -(top+bottom)/2,(near+far)/2)) 

– Scale to have sides of length 2 
S(2/(right-left),2/(top-bottom),2/(near-far)) 
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Final Projection 

•  Set z =0  
•  Equivalent to the homogeneous coordinate 

transformation 

•  Hence, general orthogonal projection in 4D is 

Morth =  

P = MorthST 



Oblique Projections 

•  The OpenGL projection functions 
cannot produce general parallel 
projections such as 

•  However if we look at the example of 
the cube it appears that the cube has 
been sheared 

•  Oblique Projection = Shear + 
Orthogonal Projection 



General Shear 

top view 
side view 



Shear Matrix 
xy shear (z values unchanged) 

Projection matrix 

General case:  

H(θ,φ) =  

P = Morth H(θ,φ)  

P = Morth STH(θ,φ)  



Equivalency 



Effect on Clipping 

•  The projection matrix P = STH 
transforms the original clipping 
volume to the default clipping volume 

top view 

DOP DOP 

near plane 

far plane 

object 

clipping 
volume 

z = -1 

z =  1 

x = -1 
x = 1 

   distorted object 
(projects correctly) 



Simple Perspective 

 Consider a simple perspective with the 
COP at the origin, the near clipping plane at 
z = -1, and a 90 degree field of view 
determined by the planes  

   x = ±z, y = ±z 



Perspective Matrices 

 Simple projection matrix in homogeneous 
coordinates 

 Note that this matrix is independent of the 
far clipping plane 

M = 



Generalization 

N = 

after perspective division, the point (x, y, z, 1) goes to 

x’’ = -x/z 
y’’ = -y/z 
z’’ = -(α+β/z) 

which projects orthogonally to the desired point  
regardless of α and β	





Picking α and β	



If we pick 

the near plane is mapped to z = -1 
the far plane is mapped to z =1 
and the sides are mapped to x = ± 1, y = ± 1 

Hence the new clipping volume is the default clipping volume 



Normalization Transformation 

original 
clipping 

     volume 
original object new clipping 

   volume 

distorted object 
projects correctly 



OpenGL Perspective 

•  glFrustum allows for an asymmetric 
viewing frustum (although 
gluPerspective does not) 



OpenGL Perspective Matrix 

•  The normalization in glFrustum requires an 
initial shear to form a right viewing 
pyramid, followed by a scaling to get the 
normalized perspective volume. Finally, 
the perspective matrix results in needing 
only a final orthogonal transformation 

P = NSH 

our previously defined 
 perspective matrix 

shear and scale 



OpenGL Perspective Matrix 
•  H (shear): skew the point ((left+right)/2, (top

+bottom)/2, -near) to (0, 0, -near) 
•  S (scale): scale the sides to x = ±z, y = ±z 
•  N (normalization): get the far plan to z = -1 

and the near plane to z = 1 
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Why do we do it this way? 

•  Normalization allows for a single 
pipeline for both perspective and 
orthogonal viewing 

•  We keep in four dimensional 
homogeneous coordinates as long as 
possible to retain three-dimensional 
information needed for hidden-surface 
removal and shading 

•  We simplify clipping 



View Volume Clipping Limits 

           Parallel  Perspective 
Above    y > 1       y > w 
Below    y < 0       y < -w 
Right            x > 1        x > w 
Left             x < 0        x < -w 
Behind (yon)   z > 1       z  > w 
In Front (hither)          z < 0        z < 0 

A point (x, y, z) is in the view volume if and only if it lies 
inside these 6 planes. 



Recall the Standard View Volume: 

back: ZC =1 

(1, -1, 1)T 

(1, 1, 1)T 

(-1, 1, 1)T 
YC 

XC 

ZC 

ZC=FRONT-PRN 
       BACK-PRN 

plane ZC = YC 

plane ZC = XC 



The Perspective Transformation 
(for the Perspective Case only) 
•  Now that we have a normalized perspective view 

volume we apply one more matrix to it in order to 
permit simple depth comparisons 

•  Where Zfront is the value of the front clipping z 
coordinate after viewing transformation -- 
   (Front - PRN) / (Back - PRN) 



What does M do? 

•  Notice that M does not affect the x or y 
coordinates. 

•  M sets the homogeneous coordinate  
 w ← z. 

•  z is changed to lie in the range [0, 1]. 
•  Check: if z = Zfront then new z ← 0;  

        if z = 1 then new z ← 1. 



M Changes Standard Pyramid to 
This... 
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M Creates the Foreshortening 
Effect 

•  Thus M makes the projectors parallel, 
allowing later depth comparisons: 

becomes 



The Perspective Transformation M 

•  Preserves relative depth. 
•  Preserves linearity (“straightness”). 
•  Preserves planarity. 
•  Produces perspective foreshortening. 
•  Still permits clipping -- just use W 

coordinate. 


