
Computer Graphics
Viewing Transformations and Projection

Based on slides by Dianna Xu, Bryn Mawr College

Parallel Projection Clipping View
Volume
•  View Volume determined by the direction

of projection and the window

Oblique Perpendicular

Parallel Projection View Volume
•  View Volume is now a parallelopiped.

The Synthetic Camera

•  Translated via CP changes.
•  Rotated via UP changes.
•  Redirected via View Plane Normal changes

(e.g. panning).
•  Zoom via changes in View Distance

 CP

NORM

V
UP

View Distance

3D Viewing Pipeline Modeling transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device
coordinates

3D WORLD

3D
World

3D eye

3D clip

3D clip

3D
NDC

3D
NDC

2D SCREEN

“Standard
View
Volume”

Viewing transformation

Transform World Coordinates to
Eye Coordinates

Approximate steps:
•  Put eye (center of projection) at (0, 0,

0).
•  Make X point to right.
•  Make Y point up.
•  Make Z point forward (away from eye in

depth).
•  (This is now a left-handed coordinate

system!)

World to Eye Transformation
START

X
Y

Z

View direction

Eye = center of projection

World to Eye Transformation
Translate eye to (0, 0, 0)

X
Y

Z

World to Eye Transformation
Align view direction with +Z

World to Eye Transformation
Align VUP direction with +Y

World to Eye Transformation
Scale to LH coordinate system

3D Viewing Pipeline Modeling transformation

Viewing transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device
coordinates

3D WORLD

3D
World

3D eye

3D clip

3D clip

3D
NDC

3D
NDC

2D SCREEN

“Standard
View
Volume”

On to the Clipping Transformation

•  It remains to do the transformations that put
these coordinates into the clipping
coordinate system

•  We have to shear it to get it upright

Shear Layout

REF N

V

VIEWD

U

PR

PRN

window

Notice that the view pyramid is not a right pyramid.
We must make it so with the shear transformation

Scaling to Standard View Volume

window

ZC=FRONT-PRN

ZC

ZC=VIEWD-PRN

ZC=BACK-PRN

YC

XC

The Standard View Volume for
Perspective Case

back: ZC =1

(1, -1, 1)T

(1, 1, 1)T

(-1, 1, 1)T
YC

XC

ZC

ZC=FRONT-PRN
 BACK-PRN

plane ZC = YC

plane ZC = XC

Scaling to Standard View
Volume: Parallel

front

back

YC

XC

ZC

window

FRONT-VIEWD BACK-VIEWD

The Standard View Volume for
Parallel: The Unit Cube [0, 1]3

front

back: ZC =1

YC

(1, 0, 1)T

(1, 1, 1)T

(0, 1, 1)T

(1, 1, 0)T

XC

ZC

3D Viewing Pipeline Modeling transformation

Viewing transformation

Clipping transformation

Clip

Projection (homogeneous division)

Image transformation

NDC to physical device
coordinates

3D WORLD

3D
World

3D eye

3D clip

3D clip

3D
NDC

3D
NDC

2D SCREEN

“Standard
View
Volume”

Perspective Transformation

Projections

•  The default projection in the eye (camera)
frame is orthogonal

•  For points within the default view volume

xp = x
yp = y
zp = 0

Normalization

•  Most graphics systems use view
normalization
– All other views are converted to the default

view by transformations that determine the
projection matrix

– Allows use of the same pipeline for all views

Homogeneous Coordinate
Representation

xp = x
yp = y
zp = 0
wp = 1

pp = Mp

M =

In practice, we can let M = I and set
the z term to zero later

default orthographic projection

Simple Perspective

•  Center of projection at the origin
•  Projection plane z = d, d < 0

Perspective Equations

Consider top and side views

xp = yp = zp = d

Normalize Homogeneous
Coordinates (Perspective Only)

Returns x’ and y’ in range [-1, 1]
 z’ in range [0, 1]

Homogeneous Coordinate
Form

M =
consider q = Mp where

q = ⇒ p =

•  However w ≠ 1, so we must divide by w
to return from homogeneous
coordinates

•  This perspective division yields

 the desired perspective equations
•  We will consider the corresponding

clipping volume with the OpenGL
functions

Perspective Division

xp = yp = zp = d

OpenGL Orthogonal Viewing

glOrtho(xmin,xmax,ymin,ymax,near,far)
glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

OpenGL Perspective

glFrustum(xmin,xmax,ymin,ymax,near,far)

Using Field of View

•  With glFrustum it is often difficult to get
the desired view

•  gluPerpective(fovy, aspect, near,
far) often provides a better interface

aspect = w/h

front plane

Normalization

•  Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

•  This strategy allows us to use standard
transformations in the pipeline and makes
for efficient clipping

Pipeline View

 modelview
transformation

 projection
transformation

perspective
 division

clipping projection

nonsingular
4D → 3D

against default cube 3D → 2D

Notes

•  We stay in 4D homogeneous
coordinates through both the modelview
and projection transformations
– Both these transformations are nonsingular
– Default to identity matrices (orthogonal

view)
•  Normalization lets us clip against simple

cube regardless of type of projection
•  Delay final projection until end

–  Important for hidden-surface removal to
retain depth information as long as possible

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert
specified clipping volume to default

Orthogonal Matrix

•  Two steps
– Move center to origin

T(-(right+left)/2, -(top+bottom)/2,(near+far)/2))

– Scale to have sides of length 2
S(2/(right-left),2/(top-bottom),2/(near-far))

€

2
right − left

0 0 −
right + left
right − left

0 2
top − bottom

0 −
top+ bottom
top− bottom

0 0 2
near − far

far + near
near − far

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

P = ST =

Final Projection

•  Set z =0
•  Equivalent to the homogeneous coordinate

transformation

•  Hence, general orthogonal projection in 4D is

Morth =

P = MorthST

Oblique Projections

•  The OpenGL projection functions
cannot produce general parallel
projections such as

•  However if we look at the example of
the cube it appears that the cube has
been sheared

•  Oblique Projection = Shear +
Orthogonal Projection

General Shear

top view
side view

Shear Matrix
xy shear (z values unchanged)

Projection matrix

General case:

H(θ,φ) =

P = Morth H(θ,φ)

P = Morth STH(θ,φ)

Equivalency

Effect on Clipping

•  The projection matrix P = STH
transforms the original clipping
volume to the default clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z = 1

x = -1
x = 1

 distorted object
(projects correctly)

Simple Perspective

 Consider a simple perspective with the
COP at the origin, the near clipping plane at
z = -1, and a 90 degree field of view
determined by the planes

 x = ±z, y = ±z

Perspective Matrices

 Simple projection matrix in homogeneous
coordinates

 Note that this matrix is independent of the
far clipping plane

M =

Generalization

N =

after perspective division, the point (x, y, z, 1) goes to

x’’ = -x/z
y’’ = -y/z
z’’ = -(α+β/z)

which projects orthogonally to the desired point
regardless of α and β	

Picking α and β	

If we pick

the near plane is mapped to z = -1
the far plane is mapped to z =1
and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

Normalization Transformation

original
clipping

 volume
original object new clipping

 volume

distorted object
projects correctly

OpenGL Perspective

•  glFrustum allows for an asymmetric
viewing frustum (although
gluPerspective does not)

OpenGL Perspective Matrix

•  The normalization in glFrustum requires an
initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally,
the perspective matrix results in needing
only a final orthogonal transformation

P = NSH

our previously defined
 perspective matrix

shear and scale

OpenGL Perspective Matrix
•  H (shear): skew the point ((left+right)/2, (top

+bottom)/2, -near) to (0, 0, -near)
•  S (scale): scale the sides to x = ±z, y = ±z
•  N (normalization): get the far plan to z = -1

and the near plane to z = 1

€

P = NSH =

−2* near
right − left

0 right + left
right − left

0

0 −2* near
top − bottom

top+ bottom
top− bottom

0

0 0 far + near
near − far

2 far* near
far − near

0 0 −1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Why do we do it this way?

•  Normalization allows for a single
pipeline for both perspective and
orthogonal viewing

•  We keep in four dimensional
homogeneous coordinates as long as
possible to retain three-dimensional
information needed for hidden-surface
removal and shading

•  We simplify clipping

View Volume Clipping Limits

 Parallel Perspective
Above y > 1 y > w
Below y < 0 y < -w
Right x > 1 x > w
Left x < 0 x < -w
Behind (yon) z > 1 z > w
In Front (hither) z < 0 z < 0

A point (x, y, z) is in the view volume if and only if it lies
inside these 6 planes.

Recall the Standard View Volume:

back: ZC =1

(1, -1, 1)T

(1, 1, 1)T

(-1, 1, 1)T
YC

XC

ZC

ZC=FRONT-PRN
 BACK-PRN

plane ZC = YC

plane ZC = XC

The Perspective Transformation
(for the Perspective Case only)
•  Now that we have a normalized perspective view

volume we apply one more matrix to it in order to
permit simple depth comparisons

•  Where Zfront is the value of the front clipping z
coordinate after viewing transformation --
 (Front - PRN) / (Back - PRN)

What does M do?

•  Notice that M does not affect the x or y
coordinates.

•  M sets the homogeneous coordinate
 w ← z.

•  z is changed to lie in the range [0, 1].
•  Check: if z = Zfront then new z ← 0;

 if z = 1 then new z ← 1.

M Changes Standard Pyramid to
This...

(1, -1, 1)T

(1, 1, 1)T

(-1, 1, 1)T

XC

ZC

Y

X

(- ∞ Z)

(-1, 1, 1)T

(1, -1, 1)T

(1, 1, 1)T

(-1, -1, 1)T

(1, -1, 0)T

(-1, 1, 0)T

(-1, -1, 0)T

(1, 1, 0)T

(-1, -1, 1)T
(0, 0, 0)T (0, 0, 1)T

M Creates the Foreshortening
Effect

•  Thus M makes the projectors parallel,
allowing later depth comparisons:

becomes

The Perspective Transformation M

•  Preserves relative depth.
•  Preserves linearity (“straightness”).
•  Preserves planarity.
•  Produces perspective foreshortening.
•  Still permits clipping -- just use W

coordinate.

