
Computer Graphics
Transformations

Based on Slides by Dianna Xu, Bryn Mawr College

General Transformations
•  A transformation maps points to other

points and/or vectors to other vectors

Q=T(P)

v=T(u)

Objects and Transformations

•  Objects are made out of (many)
polygons

•  Defined by ordered list of vertices
(points).

•  A transformation is a function that maps
a point into another

•  All transformations operate as simple
changes on vertex-coordinates (2D or
3D).

Affine Transformations

•  Line preserving
•  Characteristic of many physically

important transformations
– Rigid body transformations: rotation,

translation
– Scaling, shear

•  Translation

•  Rotation

•  Dilation (scaling)

Geometric Transformations

Transformations do not
Commute

•  Let R = rotation clockwise by 90°

•  Let T= translation by (-0.5,0)

•  TR=

•  RT=

1

0 1

1

0 1

R

T 1

0 1

1

0 1

Translation

•  Move (translate, displace) a point to a new
location

•  Displacement determined by a vector d
– Three degrees of freedom
– P’=P+d

P

P’

d

How many ways?
 Although we can move a point to a new location
in infinite many ways, when we move many
points there is usually only one way

object translation: every point displaced
 by same vector

Translation Using Representations

 Using the 2D homogeneous coordinate
representation in some frame

Matrix Multiplications

•  The (i,j) entry of AB is the dot product of
the i-th row of A and j-th column of B

The Identity Matrix

•  The identity Matrix I is a square matrix
such that

•  Given a Matrix M, the inverse of M is
defined as

Understanding Rotation

Scaling

•  Expand or contract along each axis (fixed
point of origin)

Reflection

•  corresponds to negative scale factors

original sx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Matrix Representations in
Homogenous Coordinates

•  Translations

•  Rotation about origin

•  Scale about origin

Multiple Transformations:
Concatenation

•  [new]= [transform n] … [transform 2]
[transform 1] [old]

– Inefficient

– Efficient

Combine into Single Matrix

 Since we usually have many vertices to
transform, compute once:

 and each new point is a simple matrix-
vector product:

Rotation about the z axis
•  Rotation about z axis in three dimensions leaves

all points with the same z
– Equivalent to rotation in two dimensions in

planes of constant z

– or in homogeneous coordinates
 p’=Rz(θ)p

x’=x cos θ –y sin θ	

y’ = x sin θ + y cos θ	

z’ =z

3D Geometry

z

y

x

Right handed coordinate system

3D Transformations with
Homogeneous Coordinates

•  Used because:
–  Uniform representation for all common

transformations
–  Easy to manipulate with matrix algebra

Scaling Translation

Scaling and Translation
Transformation Matrices

Shear
•  Helpful to add one more basic transformation
•  Equivalent to pulling faces in opposite directions

Shearing Transformation Matrix

•  It is scaling restricted to one axis
•  x-axis example

X

Y

General Rotation About the Origin

θ	

x

z

y
v

R(θ) = Rz(θz) Ry(θy) Rx(θx)

θx θy θz are called the Euler angles

Note that rotations do not commute
We can use rotations in another order but
with different angles

•  A rotation by θ about an arbitrary axis can
be decomposed into the concatenation of
rotations about the x, y and z axes

•  Counter-clockwise rotation around individual
axes:

•  Any rotation can be given as a composition of
rotations about the three axes

Rotation Transformation Matrix

Rx(α) Ry(β) Rz(γ)

Rotation about an Arbitrary Axis

X

Y

Z

Length of

a, b, c are direction cosines:

General Rotation
Transformation Matrix

What if Axis does not go
through Origin?

1. Translate to origin:
2. Do rotation:
3. Translate back:

Rotation About a Fixed Point other
than the Origin

General Transformation Matrix

•  Combining rotation and translation

Instancing
•  In modeling, we often start with a simple

object centered at the origin, oriented with
the axis, and at a standard size

•  We apply an instance transformation to its
vertices to
 Scale
 Orient
 Locate

Inverses

•  Although we could compute inverse matrices by
general formulas, we can use simple geometric
observations
– Translation:
– Rotation:

• Holds for any rotation matrix
• 

– Scaling:

