
1/23/2018

1

CMSC 246 Systems
Programming

Spring 2018
Bryn Mawr College

Instructor: Deepak Kumar

Input

• scanf() is the C library’s counterpart to printf.

• Syntax for using scanf()

scanf(<format-string>, <variable-reference(s)>)

• Example: read an integer value into an int variable data.

scanf("%d", &data); //read an integer; store into data

• The & is a reference operator. More on that later!

2

1/23/2018

2

Reading Input

• Reading a float:

scanf("%f", &x);

• "%f" tells scanf to look for an input value in float format (the
number may contain a decimal point, but doesn’t have to).

3

Standard Input & Output Devices

• In Linux the standard I/O devices are, by default, the keyboard for input,
and the terminal console for output.

• Thus, input and output in C, if not specified, is always from the standard
input and output devices. That is,

printf() always outputs to the terminal console

scanf() always inputs from the keyboard

• Later, you will see how these can be reassigned/redirected to other
devices.

4

1/23/2018

3

Program: Convert Fahrenheit to Celsius

• The celsius.c program prompts the user to enter a Fahrenheit
temperature; it then prints the equivalent Celsius temperature.

• Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

• The program will allow temperatures that aren’t integers.

5

Program: Convert Fahrenheit to Celsius
ctof.c

#include <stdio.h>

int main(void)

{

float f, c;

printf("Enter Fahrenheit temperature: ");

scanf("%f", &f);

c = (f – 32) * 5.0/9.0;

printf("Celsius equivalent: %.1f\n", c);

return 0;

} // main() Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

6

1/23/2018

4

Improving ctof.c

Look at the following command:

c = (f – 32) * 5.0/9.0;

First, 32, 5.0, and 9.0 should be floating point values: 32.0, 5.0, 9.0

Second, by default, in C, they will be assumed to be of type double
Instead, we should write

c = (f – 32.0f) * 5.0f/9.0f;

What about using constants/magic numbers?

7

Defining constants - macros
#define FREEZING_PT 32.0f

#define SCALE_FACTOR (5.0f/9.0f)

So we can write:

c = (f – FREEZING_PT) * SCALE_FACTOR;

When a program is compiled, the preprocessor replaces each macro by the value that it
represents.

During preprocessing, the statement

c = (f – FREEZING_PT) * SCALE_FACTOR;

will become

c = (f – 32.f) * (5.0f/9.0f);

This is a safer programming practice.

8

1/23/2018

5

Program: Convert Fahrenheit to Celsius
ctof.c
#include <stdio.h>

#define FREEZING_PT 32.0f
#define SCALE_FACTOR (5.0f/9.0f)

int main(void)
{

float f, c;

printf("Enter Fahrenheit temperature: ");
scanf("%f", &f);

c = (f – FREEZING_PT) * SCALE_FACTOR;

printf("Celsius equivalent: %.1f\n", c);

return 0;
} // main() Sample program output:

Enter Fahrenheit temperature: 212

Celsius equivalent: 100.0

9

Identifiers

• Names for variables, functions, macros, etc. are called identifiers.

• An identifier may contain letters, digits, and underscores, but must
begin with a letter or underscore:

times10 get_next_char _done

It’s usually best to avoid identifiers that begin with an underscore.

• Examples of illegal identifiers:

10times get-next-char

10

1/23/2018

6

Identifiers

• C is case-sensitive: it distinguishes between upper-case and lower-case
letters in identifiers.

• For example, the following identifiers are all different:
job joB jOb jOB Job JoB JOb JOB

• Many programmers use only lower-case letters in identifiers (other than
macros), with underscores inserted for legibility:
symbol_table current_page name_and_address

• Other programmers use an upper-case letter to begin each word within an
identifier:
symbolTable currentPage nameAndAddress

• C places no limit on the maximum length of an identifier.

11

Keywords
• The following keywords can’t be used as identifiers:
auto enum restrict* unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof _Bool*

continue if static _Complex*

default inline* struct _Imaginary*

do int switch

double long typedef

else register union

• Keywords (with the exception of _Bool, _Complex, and _Imaginary)
must be written using only lower-case letters.

• Names of library functions (e.g., printf) are also lower-case.

12

1/23/2018

7

If and Switch statements in C

• A compound statement has the form
{ statements }

• In its simplest form, the if statement has the form

if (expression) compound/statement

• An if statement may have an else clause:

if (expression) compound/statement else compound/statement

• Most common form of the switch statement:

switch (expression) {

case constant-expression : statements
…

case constant-expression : statements
default : statements

}

13

Arithmetic Operators

• C provides five binary arithmetic operators:
+ addition
- subtraction
* multiplication
/ division
% remainder

• An operator is binary if it has two operands.

• There are also two unary arithmetic operators:
+ unary plus
- unary minus

14

1/23/2018

8

Logical Expressions

• Several of C’s statements must test the value of an expression to see
if it is “true” or “false.”

• In many programming languages, an expression such as i < j would
have a special “Boolean” or “logical” type.

• In C, a comparison such as i < j yields an integer: either 0 (false) or 1
(true).

15

Relational Operators

• C’s relational operators:
< less than
> greater than
<= less than or equal to
>= greater than or equal to

• C provides two equality operators:
== equal to
!= not equal to

• More complicated logical expressions can be built from simpler ones by
using the logical operators:
! logical negation
&& logical and

These operators produce 0 (false) or 1 (true) when used in expressions.

16

1/23/2018

9

Logical Operators

• Both && and || perform “short-circuit” evaluation: they first evaluate the
left operand, then the right one.

• If the value of the expression can be deduced from the left operand alone,
the right operand isn’t evaluated.

• Example:
(i != 0) && (j / i > 0)

(i != 0) is evaluated first. If i isn’t equal to 0, then (j / i > 0) is
evaluated.

• If i is 0, the entire expression must be false, so there’s no need to evaluate (j
/ i > 0). Without short-circuit evaluation, division by zero would have
occurred.

17

Relational Operators & Lack of Boolean
Watch out!!!
• The expression

i < j < k

is legal, but does not test whether j lies between i and k.

• Since the < operator is left associative, this expression is equivalent to

(i < j) < k

The 1 or 0 produced by i < j is then compared to k.

• The correct expression is i < j && j < k.

18

1/23/2018

10

Loops

• The while statement has the form

while (expression) statement

• General form of the do statement:

do statement while (expression) ;

• General form of the for statement:

for (expr1 ; expr2 ; expr3) statement

expr1, expr2, and expr3 are expressions.

• Example:

for (i = 10; i > 0; i--)

printf("T minus %d and counting\n", i);

• In C99, the first expression in a for statement can be replaced by a declaration.

• This feature allows the programmer to declare a variable for use by the loop:

for (int i = 0; i < n; i++)

…

19

The printf Function

• The printf function must be supplied with a format string, followed by
any values that are to be inserted into the string during printing:

printf(string, expr1, expr2, …);

• The format string may contain both ordinary characters and conversion
specifications, which begin with the % character.

• A conversion specification is a placeholder representing a value to be filled
in during printing.
• %d is used for int values

• %f is used for float values

20

1/23/2018

11

The printf Function

• Ordinary characters in a format string are printed as they appear in the string;
conversion specifications are replaced.

• Example:
int i, j;

float x, y;

i = 10;

j = 20;

x = 43.2892f;

y = 5527.0f;

printf("i = %d, j = %d, x = %f, y = %f\n", i, j, x, y);

• Output:
i = 10, j = 20, x = 43.289200, y = 5527.000000

21

The printf Function

• Compilers aren’t required to check that the number of conversion specifications
in a format string matches the number of output items.

• Too many conversion specifications:

printf("%d %d\n", i); /*** WRONG ***/

• Too few conversion specifications:

printf("%d\n", i, j); /*** WRONG ***/

• If the programmer uses an incorrect specification, the program will produce
meaningless output:

printf("%f %d\n", i, x); /*** WRONG ***/

22

1/23/2018

12

tprintf.c

/* Prints int and float values in various formats */

#include <stdio.h>

int main(void)

{

int i;

float x;

i = 40;

x = 839.21f;

printf("|%d|%5d|%-5d|%5.3d|\n", i, i, i, i);

printf("|%10.3f|%10.3e|%-10g|\n", x, x, x);

return 0;

}

• Output:

|40| 40|40 | 040|

| 839.210| 8.392e+02|839.21 |

23

Escape Sequences

• The \n code that used in format strings is called an escape sequence.

• Escape sequences enable strings to contain nonprinting (control) characters and characters that have a special meaning
(such as ").

• A partial list of escape sequences:

Alert (bell) \a

Backspace \b

New line \n

Horizontal tab \t

printf("Item\tUnit\tPurchase\n\tPrice\tDate\n");

• Executing this statement prints a two-line heading:

Item Unit Purchase

Price Date

24

1/23/2018

13

Escape Sequences

• Another common escape sequence is \", which represents the "
character:

printf("\"Hello!\"");

/* prints "Hello!" */

• To print a single \ character, put two \ characters in the string:

printf("\\");

/* prints one \ character */

25

The scanf Function

• scanf reads input according to a particular format.

• A scanf format string may contain both ordinary characters and
conversion specifications.

• The conversions allowed with scanf are essentially the same as
those used with printf.

26

1/23/2018

14

The scanf Function

• In many cases, a scanf format string will contain only conversion
specifications:

int i, j;

float x, y;

scanf("%d%d%f%f", &i, &j, &x, &y);

• Sample input:

1 -20 .3 -4.0e3

scanf will assign 1, –20, 0.3, and –4000.0 to i, j, x, and y,
respectively.

27

How scanf Works

• As it searches for a number, scanf ignores white-space characters (space,
horizontal and vertical tab, form-feed, and new-line).

• A call of scanf that reads four numbers:
scanf("%d%d%f%f", &i, &j, &x, &y);

• The numbers can be on one line or spread over several lines:
1

-20 .3
-4.0e3

• scanf sees a stream of characters (¤ represents new-line):
••1¤-20•••.3¤•••-4.0e3¤
ssrsrrrsssrrssssrrrrrr (s = skipped; r = read)

• scanf “peeks” at the final new-line without reading it.

28

1/23/2018

15

How scanf Works

• Sample input:

1-20.3-4.0e3¤

• The call of scanf is the same as before:

scanf("%d%d%f%f", &i, &j, &x, &y);

• Here’s how scanf would process the new input:
• %d. Stores 1 into i and puts the - character back.

• %d. Stores –20 into j and puts the . character back.

• %f. Stores 0.3 into x and puts the - character back.

• %f. Stores –4.0 × 103 into y and puts the new-line character back.

29

Ordinary Characters in Format Strings

• When it encounters one or more white-space characters in a format
string, scanf reads white-space characters from the input until it
reaches a non-white-space character (which is “put back”).

• When it encounters a non-white-space character in a format string,
scanf compares it with the next input character.
• If they match, scanf discards the input character and continues processing

the format string.

• If they don’t match, scanf puts the offending character back into the input,
then aborts.

30

1/23/2018

16

Ordinary Characters in Format Strings

• Examples:
• If the format string is "%d/%d" and the input is •5/•96, scanf succeeds.

• If the input is •5•/•96 , scanf fails, because the / in the format string
doesn’t match the space in the input.

• To allow spaces after the first number, use the
format string "%d /%d" instead.

31

Program: Adding Fractions

• The addfrac.c program prompts the user to enter two fractions
and then displays their sum.

• Sample program output:

Enter first fraction: 5/6

Enter second fraction: 3/4

The sum is 38/24

32

1/23/2018

17

addfrac.c

/* Adds two fractions */

#include <stdio.h>

int main(void)

{

int num1, denom1, num2, denom2, result_num, result_denom;

printf("Enter first fraction: ");

scanf("%d/%d", &num1, &denom1);

printf("Enter second fraction: ");

scanf("%d/%d", &num2, &denom2);

result_num = num1 * denom2 + num2 *denom1;

result_denom = denom1 * denom2;

printf("The sum is %d/%d\n",result_num, result_denom)

return 0;

}

33

Acknowledgements

Some content from these slides is based on the book, C Programming –
A Modern Approach, By K. N. King, 2nd Edition, W. W. Norton 2008.

Some content is also included from the lecture slides provided by Prof.
K. N. King. Thank You!

34

