
	 1	

Name:	___	
	

CS246	Sample	Exam	#2	
March	28,	2017	

	
This	exam	is	open-book/open-note.	You	may	use	any	printed	resources	you	like.	You	may	
not	use	any	computing	devices,	such	as	laptops,	phones,	or	calculators.	
	
This	sample	exam	has	not	been	length-tested.	It	may	be	shorter	or	longer	than	the	real	
thing.	
	
When	writing	code,	the	logic	behind	your	code	is	more	important	than	syntactic	accuracy.	
In	other	words,	pay	attention	to	getting	your	loops	right,	not	your	semicolons.	

	
	
	
	

	 	

	 2	

1. For	each	expression	below,	write	down	the	type	of	the	expression,	or	write	"invalid"	
if	the	expression	is	invalid.	Assume	the	following	declarations:	

	
int i;
int* p;
int* q;

	
a. i _____________	

b. &i _____________	

c. p[0] _____________	

d. p + 2 _____________	

e. &p _____________	

	
	

	 	

	 3	

2. Consider	the	following	stretch	of	code.	Give	the	values	of	the	expressions	below	
after	this	code	is	run.	

	
int i = 5;
int j = 10;
int* p = &i;
int* q = &i;

i++;
(*p)++;
j = *q;
(*q)++;
j--;
q = &j;
(*q)--;

a. i ___________

b. j ___________

c. *p ___________

d. *q ___________

	 4	

3. Consider	the	following	function	and	stretch	of	code.	Give	the	values	of	the	
expressions	below	after	the	code	is	run.	

	
int frob(int x, int* y)
{
 *y = x;
 x = 10;
 y = &x;
 return x + 5;
}

int a = 8;
int b = 6;

frob(a, &b);

int c = 17;

frob(c, &c);

a. a _______________

b. b _______________

c. c _______________

	 	

	 5	

4. Write	a	function	that	computes	the	first	and	last	digit	of	a	number,	placing	the	
results	in	the	pointers	provided.	

	
// precondition: first and last point to valid ints
// postcondition: *first is the first (leftmost) digit in n;
// *last is the last (rightmost) digit in n
void get_digits(int n, int* first, int* last)
{

}

	 6	

5. Write	a	function	that	computes	the	sum	of	all	the	ints	in	a	two-dimensional	array.	
Other	than	in	the	function	header,	use	no	brackets.	Additionally,	use	only	one	loop.

// precondition: arr is a m-by-n array
// postcondition: returns the sum of all the ints in the array

 int sum(int m, int n, int arr[m][n])
 {

 }

	 7	

6. Write	a	function	to	copy	a	string	from	one	memory	location	to	another.	The	function	
returns	whether	there	is	enough	room	to	store	the	string	in	the	destination	memory.	

	
// precondition: `from` points to a valid C string
// `to` points to a region of memory `n` chars long
// postcondition: if there is enough space, `to` points to a copy
// of the string in `from` and this function
// returns true. Otherwise, this function returns
// false.
bool string_copy(char* from, int n, char to[n])
{

}

	 8	

7. Write	a	function	to	compute	the	geometric	center	of	a	collection	of	points.	A	point	is	
represented	by	the	point	struct	below.	To	compute	a	geometric	center,	simply	
average	all	the	points.	That	is,	the	x-coordinate	of	the	center	is	the	average	of	the	x-
coordinates	of	all	the	points,	and	similar	for	the	y-coordinate.	You	may	find	it	useful	
to	write	a	helper	function.	

	
typedef struct point {
 float x;
 float y;
} point;

// precondition: points is an array of n points
// postcondition: returns the geometric center of the points

 point get_center(int n, point points[n])
 {

}

