Name:

CS246 Sample Exam #1 February 21, 2017

This exam is open-book/open-note. You may use any printed resources you like. You may **not** use any computing devices, such as laptops, phones, or calculators.

This sample exam has ${\it not}$ been length-tested. It may be shorter or longer than the real thing.

When writing code, the logic behind your code is more important than syntactic accuracy. In other words, pay attention to getting your loops right, not your semicolons.

Name:					
1.	. Write the following in octal notation:				
		0x123			
	b.	0xABC			
	c.	0xCA1			
	d.	13			
2.		nsider the followir e is greater? Circle		When considered as signed nsidered greater.	chars, which
	a.	0b00110010			
		0b01001101			
	b.	0b00000001			
		0b10000000			
	c.	0b00000000			
		0b11111111			
	d.	0b00111111			
		0b01000000			

Name:

3.	What is the result of the following operations? Write your answer in the same
	representation (that is, decimal, hexadecimal, octal, or binary) that the question is
	asked in. In the case of shift operations, use the representation of the number to the
	left of the shift operator. Consider all values to be unsigned chars.

a.	0b00110001 << 2	
b.	0b10011000 &	
	0b10110011	
c.	0b10011000	
	0b10110011	
d.	0b10011000 ^	
	0b10110011	
e.	0x0F >> 1	
f.	13 << 1	
g.	27 & 1	
_		
h.	~0x0F	

Name: _____

4. What is printed when mystery(3) is called?

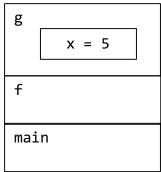
```
int mystery(int a)
{
    for(int i = 0; i < 10; i++)
    {
        if(a % 2 == 0)
        {
            a /= 2;
        }
        else
        {
            a = a * 3 + 1;
        }
        if(a == 1)
        {
            return i;
        }
        printf("%d %d\n", a, i);
    }
    return -1;
}</pre>
```

You may use this space for scratchwork:

i	a

Put program output here:		

5. Write a function to compute a difference array. A *difference array* is an array that contains the difference between every two elements in an input array. For example, if a is 5-element array containing {3, 4, 6, 1, -10}, then darray(5, a, b) will fill the array b with {1, 2, -5, -11} because 4 - 3 = 1, 6 - 4 = 2, 1 - 6 = -5, and -10 - 1 = -11. You may assume that the length of the input array is greater than 0.


```
void darray(int n, int a[n], int b[n-1])
{
```

}

Name: _____

6. Consider the following functions:

int main() { f(); } void f() { g(5); } void g(int x) { } At its deepest point, the stack frames of this program look like this:

a. Now consider the following program. What do its stack frames look like at their deepest point? Recall that parameters are local variables, too. Note that the example above is just to set the format for the answer; it has no bearing on the code below. Draw your stack frames to the right of the code.

```
int r(int a, int b)
{
     if(b == 0)
     {
        return 1;
     }
     else
     {
        return a * r(a, b-1);
     }
}
int main()
{
    printf("%d\n", r(3, 4));
}
```

b. What does the program print?
