
CS246	
 Mini-­‐lab	

Spring	
 2016	

Revision	
 Wars	
 (in	
 class	
 only)	

	

Purpose:	

	
 Revision	
 control	
 can	
 be	
 daunting.	
 This	
 lab	
 is	
 meant	
 to	
 introduce	
 you	
 to	
 a	
 safe	

place	
 for	
 experimentation,	
 the	
 revisionWars	
 repository.	

	

Submit:	
 Each	
 person	
 must	
 have	
 committed	
 and	
 pushed	
 at	
 least	
 1	
 revision	
 to	

/rd/cs246s2016/shared/revisionWars	
 with	
 a	
 comment	
 that	
 has	
 your	
 Full	
 Name,	

username,	
 and	
 a	
 brief	
 description	
 of	
 the	
 changes	
 made.	

	

Setup:	

• Groups	
 of	
 4,	
 two	
 paired	
 programming	
 teams.	

• Select	
 a	
 group	
 name.	
 	
 Clone	
 revisionWars	
 from	
 /rd/cs246s2016/shared/	

Make	
 a	
 file	
 <GroupName.cpp>	
 in	
 the	
 revisionWars/	
 directory.	

• One	
 pair	
 should	
 make	
 the	
 file	
 in	
 their	
 own	
 revisionWars	
 clone.	

• Then	
 after	
 they	
 commit	
 and	
 push,	
 the	
 other	
 pair	
 should	
 make	
 changes.	

• Copy	
 the	
 below	
 main	
 function	
 to	
 your	
 file:	

	

int	
 main(char**	
 argv,	
 int	
 argc)	
 {	

	

	
 //	
 Pair	
 1	
 partner	
 A	
 code	

	

	
 //	
 Pair	
 1	
 partner	
 B	
 code	

	

	
 //	
 Pair	
 2	
 partner	
 A	
 code	

	

	
 //	
 Pair	
 2	
 partner	
 B	
 code	

	
 	

	

}	

	

Tasks:	

Each	
 pair	
 should	
 do	
 a	
 standard	
 pair	
 programming	
 task	
 where	
 the	
 first	
 person	
 	

1. Fills	
 in	
 their	
 spot.	
 	

2. commits	
 the	
 code	

3. synchronizes	
 the	
 file	
 	

a. pull,	
 	

b. merge/update,	
 	

c. commit,	

d. push	

While	
 the	
 other	
 person	
 actively	
 critiques.	

	

(continues	
 on	
 next	
 page…)	

Once	
 you’ve	
 made	
 the	
 file	
 and	
 put	
 some	
 text	
 into	
 it,	
 you	
 should	
 commit	
 it,	
 and	

push	
 it	
 to	
 the	
 server.	
 Note:	
 There	
 may	
 be	
 a	
 failure	
 when	
 you	
 try	
 to	
 push	
 to	

the	
 server	
 if	
 there	
 is	
 a	
 revision	
 on	
 the	
 server	
 that	
 you	
 haven’t	
 pulled	
 yet.	
 If	

that	
 is	
 the	
 case,	
 you	
 will	
 need	
 to	
 pull,	
 and	
 merge	
 any	
 files	
 that	
 have	
 multiple	

versions.	
 TortoiseHg	
 Workbench	
 or	
 Synchronization	
 can	
 help	
 you	
 through	

this	
 process.	
 Some	
 documentation	
 is	
 excerpted	
 in	
 the	
 following	
 pages.	
 The	

quick	
 start	
 guide,	
 	

http://tortoisehg.readthedocs.org/en/latest/quick.html,	

and	
 TortoiseHg	
 in	
 daily	
 use:	

http://tortoisehg.readthedocs.org/en/latest/daily.html,	

have	
 the	
 most	
 useful	
 information.	

	

	

source:
http://tortoisehg.readthedocs.org/en/latest/quick.ht
ml#working-with-your-repository

4.9. Working with your repository

Suppose you’ve introduced some changes. It is easy to discover what pending
changes there are in the repository.

Workbench: go to the Commit task tab and inspect the filelist at the left

Any files marked with ‘A’ (added, green), with ‘?’ (unversioned but not ignored,
fuchsia), with ‘M’ (modified, blue), or with ‘!’ (removed, red) indicate pending
changes that should be committed.

The Commit task tab in the Workbench gives you a way to see differences
within the files, or you can use your visual difference tool (kdiff3). Mercurial
allows you to commit many changes before you decide to synchronize (share
changes) with the group repository.

Explorer: inspect the icons on the folders and files in your repository

Folders or files in Explorer marked with one of the icons below are another way
of indicating pending changes. You can traverse the directories to find specific

changes and commit them from Explorer. Though it might be quicker to do that
from the Commit task tab in the Workbench.

Overlay Icons on Vista
Command line: type thg commit

When you’re ready to publish your changes, you

1. Commit your changes to your local repository (see above).
2. Pull changes from the group repository into your repository using TortoiseHg

‣ Workbench or thg log, select the Sync task tab, choose the path to the
group repository in the syncbar and then click the Pull button.

3. If some changesets were pulled, merge those changes with your local
changes and then commit the merge into your local repository. From the
revision history viewer (TortoiseHg ‣ Workbench or thg log) open the context
menu over the changeset which you want to merge and select Merge with
local.... Finally, in the merge dialog, press Merge and then Commit.

4. Ensure your merged work still builds and passes your extensive test suite.
5. Push your changes to the group repository, TortoiseHg ‣ Workbench or thg

log, select the path to group repository and then click the Push button.

Which may sound complicated, but is easier than it sounds.

Note

Merges can be safely restarted if necessary.
Mercurial makes collaboration easy, fast, and productive. Learn more at
Mercurial’s wiki.

	

Source:
http://tortoisehg.readthedocs.org/en/latest/workben
ch.html

5.4.4. Sync Toolbar

Sync toolbar

Synchronize your repository with other repositories.

Incoming
Download incoming changesets from the remote repository, store then in
a temporary bundle file, then enter bundle preview mode with the
incoming changes applied. Incoming changesets will be shown as
normal, while others will be shown grayed in the revision graph. The
buttonsAccept and Reject are then shown at the top of the revision
graph.

Pull
Pull incoming changesets from the remote repository, then apply after-
pull effect (update, fetch, or rebase).

Outgoing
Determine outgoing changesets that would be pushed to the remote
repository. Outgoing changesets will be shown as normal, while others
will be shown grayed in the revision graph.

Push
Push outgoing changesets to the remote repository.

	

Source:
http://tortoisehg.readthedocs.org/en/latest/s
ync.html

5.9. Synchronize

Synchronize dialog

The synchronize tool is used to transmit changesets between repositories or to
email recipients.

Incoming
show changesets that would be pulled from target repository, the
changes in the target repository that are not in local repository

Pull
pull incoming changesets from target repository

Outgoing
show changesets that would be pushed to target repository, the changes
in the local repository that are not in target repository

Push
push outgoing changesets to target repository, make the local tip the
new tip in the target repository

Email
send outgoing changesets (to target repository) as email

Stop
stop current operation

The Post Pull dialog contains radio buttons for selecting the operation which is
performed after a pull. If you open the configuration tool, you can select a
default behavior for your user account and override that selection on a per-
repository basis.

None
No operations are performed after a pull. You will be allowed to view the
pulled changesets in the log viewer, and you will have the option to
update to the new tip if applicable.

Update
Automatically update to the current branch tip if, and only if, new
revisions were pulled into the local repository. This could trigger a merge
if the pulled changes conflict with local uncommitted changes.

Fetch
Equivalent to hg fetch. See the fetch extension documentation for its
behavior. This feature is only available if the fetch extension has been
enabled by the user.

Rebase
Equivalent to pull –rebase. See the rebase extension documentation for
its behavior. This feature is only available if the rebase extension has
been enabled by the user.

Automatically resolve merge conflicts where possible

If update or rebase are selected, a pull operation may result in a merge. If
checked, Mercurial will try to resolve trivial merge conflicts without user
interaction. If not checked, all merges will be interactive.

The Options dialog provides checkboxes for selecting infrequently used
command options.

Allow push of a new branch
allow a new named branch to be pushed

Force pull or push
override warnings about multiple heads or unrelated repositories

Recurse into subdirectories
incoming or outgoing commands can recurse into subdirectories and
provide a full report

Temporarily disable configured proxy
only sensitive when a web proxy is configured for the given repository.
While checked it will disable that proxy.

Remote Command
provides a –remotecmd argument

When the sync tool is opened within the Workbench, the toolbar has
a Target checkbox. While checked, the target dropdown box is sensitive and the
selected target revision, bookmark, or branch will be added to every
synchronization command. When the sync tool is opened outside of the
Workbench, the target checkbox and dropdown box is hidden. Clicking on a
revision in the graph will update the values in the dropdown box.
Holding Alt while clicking on a revision will select the revision without switching
away from the sync tool tab.

Below the toolbar is the currently selected URL. All synchronization commands
will use this URL. The general effect of the toolbar is that it can be read as a
Mercurial command line. The tool buttons select the command, the Post
Pull and Options dialog specify options, the target dropdown box can specify
revisions, and finally the URL completes the command.

