
1/28/14	

1	

Expressions

1

Based on slides from K. N. King

Bryn Mawr College
CS246 Programming Paradigm

Operators
•  C emphasizes expressions rather than statements.
•  Expressions are built from variables, constants, and

operators.
•  C has a rich collection of operators, including

o  arithmetic operators
o  relational operators
o  logical operators
o  assignment operators
o  increment and decrement operators

 and many others

2

Arithmetic Operators
•  C provides five binary arithmetic operators:

 + addition
 - subtraction
 * multiplication
 / division
 % remainder

•  An operator is binary if it has two operands.
•  There are also two unary arithmetic operators:

 + unary plus
 - unary minus

3

Unary Arithmetic Operators
•  The unary operators require one operand:

 i = +1;
 j = -i;

•  The unary + operator does nothing. It’s used
primarily to emphasize that a numeric constant is
positive.

4

Binary Arithmetic Operators
•  The value of i % j is the remainder when i is

divided by j.
 10 % 3 has the value 1, and 12 % 4 has the value 0.

•  Binary arithmetic operators—with the exception of
%—allow either integer or floating-point operands,
with mixing allowed.

•  When int and float operands are mixed, the
result has type float.
 9 + 2.5f has the value 11.5, and 6.7f / 2 has the

value 3.35.

5

The / and % Operators
•  The / and % operators require special care:

o When both operands are integers, / “truncates” the
result. The value of 1 / 2 is 0, not 0.5.

o The % operator requires integer operands; if either
operand is not an integer, the program won’t
compile.

o Using zero as the right operand of either / or %
causes undefined behavior.

6

1/28/14	

2	

Operator Precedence
•  The arithmetic operators have the following

relative precedence:
 Highest: + - (unary)
 * / %
 Lowest: + - (binary)

•  Examples:
 i + j * k is equivalent to i + (j * k)
 -i * -j is equivalent to (-i) * (-j)
 +i + j / k is equivalent to (+i) + (j / k)

7

Operator Associativity
•  Associativity comes into play when an expression

contains two or more operators with equal
precedence.

•  An operator is said to be left associative if it
groups from left to right.

•  The binary arithmetic operators (*, /, %, +, and -)
are all left associative, so

 i - j – k is equivalent to (i - j) - k
 i * j / k is equivalent to (i * j) / k

8

Operator Associativity
•  An operator is right associative if it groups from

right to left.
•  The unary arithmetic operators (+ and -) are both

right associative, so
 - + i is equivalent to -(+i)

9

Assignment Operators
•  Simple assignment: used for storing a value into a

variable
•  Compound assignment: used for updating a value

already stored in a variable

10

Simple Assignment
•  The effect of the assignment v = e is to evaluate the

expression e and copy its value into v.
•  e can be a constant, a variable, or a more

complicated expression:
 i = 5; /* i is now 5 */
 j = i; /* j is now 5 */
 k = 10 * i + j; /* k is now 55 */

11

Simple Assignment
•  If v and e don’t have the same type, then the value of e

is converted to the type of v as the assignment takes
place:

 int i;
 float f;

 i = 72.99f; /* i is now 72 */
 f = 136; /* f is now 136.0 */

•  In C, assignment is an operator, just like +.
•  The value of an assignment v = e is the value of v after

the assignment.
o  The value of i = 72.99f is 72 (not 72.99).

12

1/28/14	

3	

Side Effects
•  An operators that modifies one of its operands is

said to have a side effect.
•  The simple assignment operator has a side effect: it

modifies its left operand.
•  Evaluating the expression i = 0 produces the result

0 and—as a side effect—assigns 0 to i.

13

Side Effects
•  Since assignment is an operator, several

assignments can be chained together:
 i = j = k = 0;

•  The = operator is right associative, so this
assignment is equivalent to

 i = (j = (k = 0));

14

Side Effects
•  Watch out for unexpected results in chained

assignments as a result of type conversion:
 int i;
 float f;

 f = i = 33.3f;

•  i is assigned the value 33, then f is assigned 33.0
(not 33.3).

15

Side Effects
•  An assignment of the form v = e is allowed

wherever a value of type v would be permitted:
 i = 1;
 k = 1 + (j = i);
 printf("%d %d %d\n", i, j, k);
 /* prints "1 1 2" */

•  “Embedded assignments” can make programs hard
to read.

•  They can also be a source of subtle bugs.

16

Lvalues
•  The assignment operator requires an lvalue as its

left operand.
•  An lvalue represents an object stored in computer

memory, not a constant or the result of a
computation.

•  Variables are lvalues; expressions such as 10 or
2 * i are not.

17

Lvalues
•  Since the assignment operator requires an lvalue as

its left operand, it’s illegal to put any other kind of
expression on the left side of an assignment
expression:

 12 = i; /*** WRONG ***/
 i + j = 0; /*** WRONG ***/
 -i = j; /*** WRONG ***/

•  The compiler will produce an error message such
as “invalid lvalue in assignment.”

18

1/28/14	

4	

Compound Assignment
•  Assignments that use the old value of a variable to

compute its new value are common.
•  Example:
 i = i + 2;

•  Using the += compound assignment operator, we
simply write:

 i += 2; /* same as i = i + 2; */

19

Compound Assignment
•  There are nine other compound assignment operators,

including the following:
 -= *= /= %=

•  All compound assignment operators work in much the
same way:

 v += e adds v to e, storing the result in v
 v -= e subtracts e from v, storing the result in v
 v *= e multiplies v by e, storing the result in v
 v /= e divides v by e, storing the result in v
 v %= e computes the remainder when v is divided by e,
storing the result in v

20

Compound Assignment
•  v += e isn’t “equivalent” to v = v + e.
•  One problem is operator precedence: i *= j + k

isn’t the same as i = i * j + k.
•  There are also rare cases in which v += e differs

from v = v + e because v itself has a side effect.
•  Similar remarks apply to the other compound

assignment operators.

21

Compound Assignment
•  When using the compound assignment operators,

be careful not to switch the two characters that
make up the operator.

•  Although i =+ j will compile, it is equivalent to i
= (+j), which merely copies the value of j into
i.

22

Increment and Decrement
•  Two of the most common operations on a variable

are “incrementing” (adding 1) and
“decrementing” (subtracting 1):
 i = i + 1;
 j = j - 1;

•  Incrementing and decrementing can be done using
the compound assignment operators:
 i += 1;
 j -= 1;

23

Increment and Decrement
•  C provides special ++ (increment) and --

(decrement) operators.
•  The ++ operator adds 1 to its operand. The --

operator subtracts 1.
•  The increment and decrement operators are tricky

to use:
o They can be used as prefix operators (++i and –-
i) or postfix operators (i++ and i--).

o They have side effects: they modify the values of
their operands.

24

1/28/14	

5	

Increment and Decrement
•  Evaluating the expression ++i (a “pre-increment”)

yields i + 1 and—as a side effect—increments i:
 i = 1;
 printf("i is %d\n", ++i); /* prints "i is 2" */
 printf("i is %d\n", i); /* prints "i is 2" */

•  Evaluating the expression i++ (a “post-increment”)
produces the result i, but causes i to be
incremented afterwards:

 i = 1;
 printf("i is %d\n", i++); /* prints "i is 1" */
 printf("i is %d\n", i); /* prints "i is 2" */

25

Increment and Decrement
•  The -- operator has similar properties:

 i = 1;
 printf("i is %d\n", --i); /* prints "i is 0" */
 printf("i is %d\n", i); /* prints "i is 0" */
 i = 1;
 printf("i is %d\n", i--); /* prints "i is 1" */
 printf("i is %d\n", i); /* prints "i is 0" */

26

Increment and Decrement
•  When ++ or -- is used more than once in the same

expression, the result can often be hard to understand.
•  Example:

 i = 1;
 j = 2;
 k = ++i + j++;

 The last statement is equivalent to
 i = i + 1;
 k = i + j;
 j = j + 1;

 The final values of i, j, and k are 2, 3, and 4, respectively.

27

Increment and Decrement
•  In contrast, executing the statements

 i = 1;
 j = 2;
 k = i++ + j++;

 will give i, j, and k the values 2, 3, and 3,
respectively.

28

Expression Evaluation
•  Table of operators discussed so far:
Precedence Name Symbol(s) Associativity
 1 increment (postfix) ++ left

 decrement (postfix) --
 2 increment (prefix) ++ right

 decrement (prefix) --
 unary plus +
 unary minus -

 3 multiplicative * / % left
 4 additive + - left
 5 assignment = *= /= %= += -= right

29

Expression Evaluation
•  The table can be used to add parentheses to an expression

that lacks them.
•  Starting with the operator with highest precedence, put

parentheses around the operator and its operands.
•  Example:

 a = b += c++ - d + --e / -f Precedence
 level
 a = b += (c++) - d + --e / -f 1
 a = b += (c++) - d + (--e) / (-f) 2
 a = b += (c++) - d + ((--e) / (-f)) 3
 a = b += (((c++) - d) + ((--e) / (-f))) 4
 (a = (b += (((c++) - d) + ((--e) / (-f))))) 5

30

1/28/14	

6	

Order of Subexpression Evaluation
•  To prevent problems, it’s a good idea to avoid using the

assignment operators in subexpressions.
•  Instead, use a series of separate assignments:

 a = 5;
 b = a + 2;
 a = 1;
 c = b - a;

 The value of c will always be 6.
•  Besides the assignment operators, the only operators that

modify their operands are increment and decrement.
•  When using these operators, be careful that an expression

doesn’t depend on a particular order of evaluation.

31

Order of Subexpression Evaluation
•  Example:

 i = 2;
 j = i * i++;

•  It’s natural to assume that j is assigned 4.
However, j could just as well be assigned 6
instead:
1. The second operand (the original value of i) is

fetched, then i is incremented.
2. The first operand (the new value of i) is fetched.
3. The new and old values of i are multiplied, yielding

6.

32

Undefined Behavior
•  Statements such as c = (b = a + 2) - (a = 1);

and j = i * i++; cause undefined behavior.
•  Possible effects of undefined behavior:

o The program may behave differently when compiled
with different compilers.

o The program may not compile in the first place.
o  If it compiles it may not run.
o  If it does run, the program may crash, behave

erratically, or produce meaningless results.

•  Undefined behavior should be avoided.

33

Expression Statements
•  In C, any expression can be used as a statement.
•  Example:
 ++i;
 i is first incremented, then the new value of i is
fetched but then discarded.

•  Since its value is discarded, there’s little point in
using an expression as a statement unless the
expression has a side effect:

 i = 1; /* useful */
 i--; /* useful */
 i * j - 1; /* not useful */

34

