THE WEIGHTED SHORTEST PATH PROBLEM

Weighted Shortest Path Problem

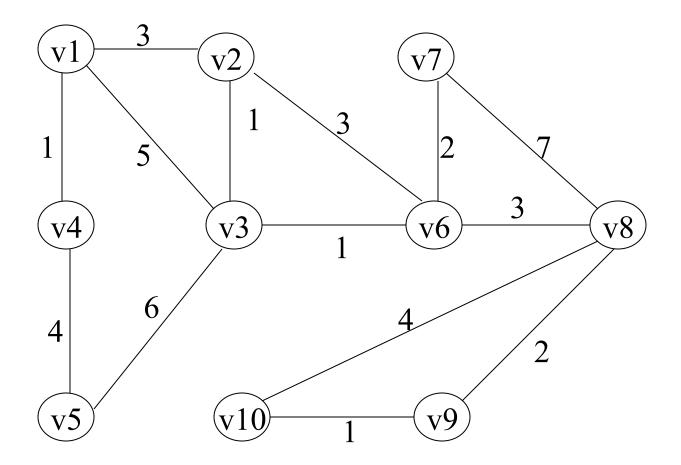
Single-source shortest-path problem:

Given as input a weighted graph, G = (V, E), and a distinguished starting vertex, s, find the shortest weighted path from s to every other vertex in G.

Dijkstra's algorithm (also called uniform cost search)

- Use a priority queue in general search/traversal
- Keep tentative distance for each vertex giving shortest path length using vertices visited so far.
- Record vertex visited before this vertex (to allow printing of path).
- At each step choose the vertex with smallest distance among the unvisited vertices (greedy algorithm).

Example Network



Dijkstra's Algorithm

The pseudo code for Dijkstra's algorithm assumes the following structure for a Vertex object

```
class Vertex
{
   public List adj; //Adjacency list
   public boolean known;
   public DisType dist; //DistType is probably int
   public Vertex path;
   //Other fields and methods as needed
```

```
Dijkstra's Algorithm
void dijksra(Vertex start)
{
   for each Vertex v in V {
        v.dist = Integer.MAX VALUE;
        v.known = false;
        v.path = null;
   }
   start.distance = 0;
   while there are unknown vertices {
        v = unknown vertex with smallest distance
        v.known = true;
        for each Vertex w adjacent to v
               if (!w.known)
                       if (v.dist + weight(v, w) < w.distance) {</pre>
                               decrease(w.dist to v.dist+weight(v, w))
                               w.path = v;
                       }
```

Correctness of Dijkstra's Algorithm

- The algorithm is correct because of a property of shortest paths:
- If $P_k = v_1, v_2, ..., v_j, v_k$, is a shortest path from v_1 to v_k , then $P_j = v_1, v_2, ..., v_j$, must be a shortest path from v_1 to v_j . Otherwise P_k would not be as short as possible since P_k extends P_j by just one edge (from v_j to v_k)
- P_j must be shorter than P_k (assuming that all edges have positive weights). So the algorithm must have found P_j on an earlier iteration than when it found P_k.
- i.e. Shortest paths can be found by extending earlier known shortest paths by single edges, which is what the algorithm does.

Running Time of Dijkstra's Algorithm

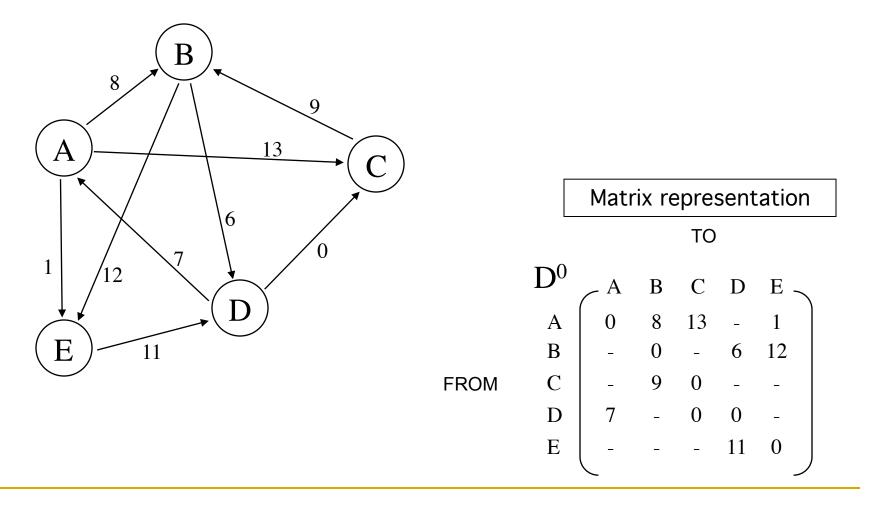
- The running time depends on how the vertices are manipulated.
- The main 'while' loop runs O(|V|) time (once per vertex)
- Finding the "unknown vertex with smallest distance" (inside the while loop) can be a simple linear scan of the vertices and so is also O(|V|). With this method the total running time is O (|V|²). This is acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|²)) since it runs in linear time on the number of edges.
- If the graph is sparse, (|E| = O (|V|)), we can use a priority queue to select the unknown vertex with smallest distance, using the deleteMin operation (O(Ig |V|)). We must also decrease the path lengths of some unknown vertices, which is also O(Ig|V|). The deleteMin operation is performed for every vertex, and the "decrease path length" is performed for every edge, so the running time is O(|E| Ig|V| + |V|Ig|V|) = O((|V|+|E|) Ig|V|) = O(|E| Ig|V|) if all vertices are reachable from the starting vertex

Dijkstra and Negative Edges

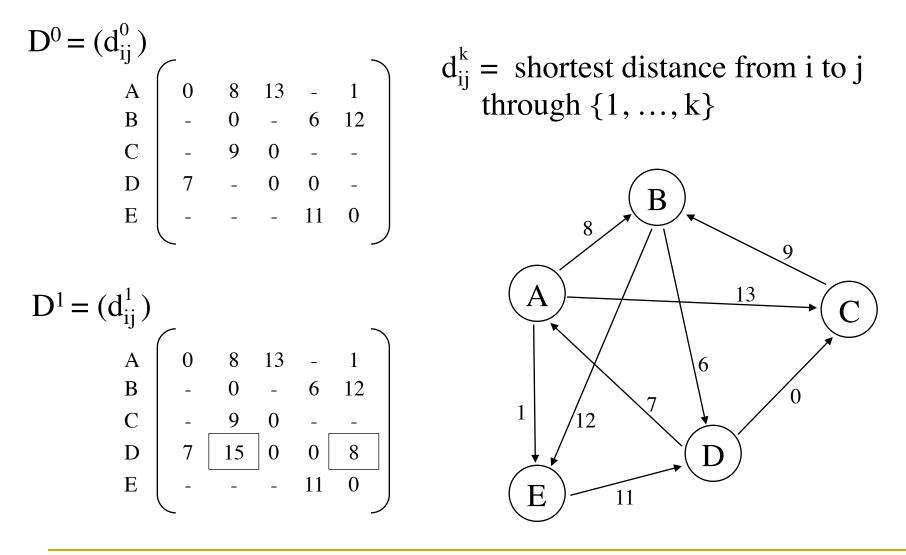
- Note in the previous discussion, we made the assumption that all edges have positive weight. If any edge has a negative weight, then Dijkstra's algorithm fails. Why is this so?
- Suppose a vertex, u, is marked as "known". This means that the shortest path from the starting vertex, s, to u has been found.
- However, it's possible that there is negatively weighted edge from an unknown vertex, v, back to u. In that case, taking the path from s to v to u is actually shorter than the path from s to u without going through v.
- Other algorithms exist that handle edges with negative weights for weighted shortest-path problem.

All-pairs shortest paths...

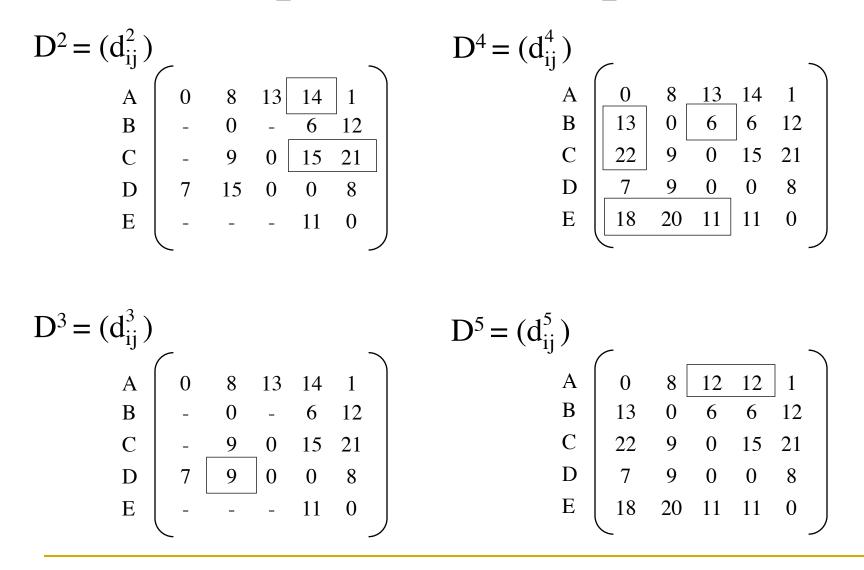
"Floyd-Warshall algorithm"



All-pairs shortest paths...



All-pairs shortest paths...



to store the path, another matrix can track the last intermediate vertex

Floyd-Warshall Pseudocode

Input: $D^0 = (d_{ij}^0)$ (the initial edge-cost matrix) Output: $D^n = (d_{ii}^n)$ (the final path-cost matrix)

