
THE WEIGHTED SHORTEST
PATH PROBLEM

1

2

Weighted Shortest Path Problem
Single-source shortest-path problem:

 Given as input a weighted graph, G = (V, E), and a
distinguished starting vertex, s, find the shortest weighted
path from s to every other vertex in G.

Dijkstra’s algorithm (also called uniform cost search)

–  Use a priority queue in general search/traversal
–  Keep tentative distance for each vertex giving shortest

path length using vertices visited so far.
–  Record vertex visited before this vertex (to allow

printing of path).
–  At each step choose the vertex with smallest distance

among the unvisited vertices (greedy algorithm).

3

Example Network

v1 v7 v2

v8 v4 v6 v3

v9 v10 v5

1

3

4

3 1

1

2 7

3

4

1

2

5

6

4

Dijkstra’s Algorithm

n  The pseudo code for Dijkstra’s algorithm assumes the
following structure for a Vertex object

class Vertex
{

 public List adj; //Adjacency list

 public boolean known;

 public DisType dist; //DistType is probably int

 public Vertex path;
 //Other fields and methods as needed

}

5

Dijkstra’s Algorithm
void dijksra(Vertex start)
{
 for each Vertex v in V {
 v.dist = Integer.MAX_VALUE;
 v.known = false;
 v.path = null;
 }

 start.distance = 0;

 while there are unknown vertices {
 v = unknown vertex with smallest distance
 v.known = true;
 for each Vertex w adjacent to v
 if (!w.known)
 if (v.dist + weight(v, w)< w.distance){
 decrease(w.dist to v.dist+weight(v, w))
 w.path = v;
 }
 }

}

6

Correctness of Dijkstra’s Algorithm
n  The algorithm is correct because of a property of

shortest paths:
n  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to
vj. Otherwise Pk would not be as short as possible since
Pk extends Pj by just one edge (from vj to vk)

n  Pj must be shorter than Pk (assuming that all edges have
positive weights). So the algorithm must have found Pj
on an earlier iteration than when it found Pk.

n  i.e. Shortest paths can be found by extending earlier
known shortest paths by single edges, which is what the
algorithm does.

7

Running Time of Dijkstra’s Algorithm

n  The running time depends on how the vertices are manipulated.
n  The main ‘while’ loop runs O(|V|) time (once per vertex)
n  Finding the “unknown vertex with smallest distance” (inside the

while loop) can be a simple linear scan of the vertices and so is also
O(|V|). With this method the total running time is O (|V|2). This is
acceptable (and perhaps optimal) if the graph is dense (|E| = O (|V|
2)) since it runs in linear time on the number of edges.

n  If the graph is sparse, (|E| = O (|V|)), we can use a priority queue
to select the unknown vertex with smallest distance, using the
deleteMin operation (O(lg |V|)). We must also decrease the path
lengths of some unknown vertices, which is also O(lg|V|). The
deleteMin operation is performed for every vertex, and the
“decrease path length” is performed for every edge, so the running
time is O(|E| lg|V| + |V|lg|V|) = O((|V|+|E|) lg|V|) = O(|E| lg|V|) if all
vertices are reachable from the starting vertex

8

Dijkstra and Negative Edges

n  Note in the previous discussion, we made the
assumption that all edges have positive weight. If any
edge has a negative weight, then Dijkstra’s algorithm
fails. Why is this so?

n  Suppose a vertex, u, is marked as “known”. This means
that the shortest path from the starting vertex, s, to u has
been found.

n  However, it’s possible that there is negatively weighted
edge from an unknown vertex, v, back to u. In that case,
taking the path from s to v to u is actually shorter than
the path from s to u without going through v.

n  Other algorithms exist that handle edges with negative
weights for weighted shortest-path problem.

All-pairs shortest paths...	

“Floyd-Warshall algorithm”!

A	

B	

E	

D	

C	

8	

13	

 1	

6	

12	

9	

7	
 0	

11	

0	
 8	
 13	
 -	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 -	
 -	

7	
 -	
 0	
 0	
 -	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

FROM

TO

Matrix representation!

D0	
 A B C D E	

All-pairs shortest paths...	

0	
 8	
 13	
 -	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 -	
 -	

7	
 -	
 0	
 0	
 -	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

D0 = (dij)	

0	

D1 = (dij)	

1	

 dij = shortest distance from i to j	

	
through {1, …, k} 	

k	

0	
 8	
 13	
 -	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 -	
 -	

7	
 15	
 0	
 0	
 8	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

A	

B	

E	

D	

C	

8	

13	

 1	

6	

12	

9	

7	
 0	

11	

All-pairs shortest paths...	

0	
 8	
 13	
 14	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 15	
 21	

7	
 15	
 0	
 0	
 8	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

D2 = (dij)	

2	

0	
 8	
 13	
 14	
 1	

-	
 0	
 -	
 6	
 12	

-	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

-	
 -	
 -	
 11	
 0	

A
B
C
D
E	

D3 = (dij)	

3	

0	
 8	
 13	
 14	
 1	

13	
 0	
 6	
 6	
 12	

22	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

18	
 20	
 11	
 11	
 0	

A
B
C
D
E	

D4 = (dij)	

4	

A
B
C
D
E	

D5 = (dij)	

5	

to store the path, another matrix can track the last intermediate vertex 	

0	
 8	
 12	
 12	
 1	

13	
 0	
 6	
 6	
 12	

22	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

18	
 20	
 11	
 11	
 0	

Floyd-Warshall Pseudocode	

Input: 	
 	
 	
 (the initial edge-cost matrix)	

Output: 	
 	
 (the final path-cost matrix)	

D0 = (dij)	

0	

Dn = (dij)	

n	

for k = 1 to n // intermediate vertices considered 	

 for i = 1 to n // the “from” vertex	

 for j = 1 to n // the “to” vertex	

 dij = min{ dij , dik + dkj }	

k-1	
k	
 k-1	
 k-1	

best, ignoring vertex k
best, including vertex k

