
THE WEIGHTED SHORTEST 
PATH PROBLEM 
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Weighted Shortest Path Problem 
Single-source shortest-path problem:  

 Given as input a weighted graph, G = ( V, E ), and a 
distinguished starting vertex, s, find the shortest weighted 
path from s to every other vertex in G. 

 
Dijkstra’s algorithm (also called uniform cost search) 

–  Use a priority queue in general search/traversal 
–  Keep tentative distance for each vertex giving shortest 

path length using vertices visited so far. 
–  Record vertex visited before this vertex (to allow 

printing of path). 
–  At each step choose the vertex with smallest distance 

among the unvisited vertices (greedy algorithm). 
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Dijkstra’s Algorithm 

n  The pseudo code for Dijkstra’s algorithm assumes the 
following structure for a Vertex object 

 
class Vertex 
{ 

 public List adj;  //Adjacency list 

 public boolean known; 

 public DisType dist;  //DistType is probably int 

 public Vertex path; 
 //Other fields and methods as needed 

} 
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Dijkstra’s Algorithm 
void dijksra(Vertex start) 
{ 
  for each Vertex v in V { 
  v.dist = Integer.MAX_VALUE;  
  v.known = false;  
  v.path = null; 
 } 

 
 start.distance = 0; 

 
 while there are unknown vertices { 
  v = unknown vertex with smallest distance 
  v.known = true; 
  for each Vertex w adjacent to v 
     if (!w.known) 
    if (v.dist + weight(v, w)< w.distance){ 
        decrease(w.dist to v.dist+weight(v, w)) 
     w.path = v; 
    } 
 } 

} 
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Correctness of Dijkstra’s Algorithm 
n  The algorithm is correct because of a property of 

shortest paths:  
n  If Pk = v1, v2, ..., vj, vk, is a shortest path from v1 to vk,   

then Pj = v1, v2, ..., vj, must be a shortest path from v1 to 
vj. Otherwise Pk would not be as short as possible since 
Pk extends Pj by just one edge (from vj to vk) 

n  Pj must be shorter than Pk (assuming that all edges have 
positive weights). So the algorithm must have found Pj 
on an earlier iteration than when it found Pk.  

n  i.e. Shortest paths can be found by extending earlier 
known shortest paths by single edges, which is what the 
algorithm does.  
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Running Time of Dijkstra’s Algorithm 

n  The running time depends on how the vertices are manipulated. 
n  The main ‘while’ loop runs O( |V| ) time (once per vertex) 
n  Finding the “unknown vertex with smallest distance” (inside the 

while loop) can be a simple linear scan of the vertices and so is also 
O( |V| ).  With this method the total running time is O (|V|2 ).  This is 
acceptable (and perhaps optimal) if the graph is dense ( |E| = O (|V|
2 ) ) since it runs in linear time on the number of edges. 

n  If the graph is sparse, ( |E| = O (|V| ) ), we can use a priority queue 
to select the unknown vertex with smallest distance, using the 
deleteMin operation (O( lg |V| )).  We must also decrease the path 
lengths of some unknown vertices, which is also O( lg|V| ). The 
deleteMin operation is performed for every vertex, and the 
“decrease path length” is performed for every edge, so the running 
time is O( |E| lg|V| + |V|lg|V|) = O( (|V|+|E|) lg|V|) = O(|E| lg|V|) if all 
vertices are reachable from the starting vertex 
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Dijkstra and Negative Edges 

n  Note in the previous discussion, we made the 
assumption that all edges have positive weight.  If any 
edge has a negative weight, then Dijkstra’s algorithm 
fails.  Why is this so? 

n  Suppose a vertex, u, is marked as “known”.  This means 
that the shortest path from the starting vertex, s, to u has 
been found. 

n  However, it’s possible that there is negatively weighted 
edge from an unknown vertex, v, back to u.  In that case, 
taking the path from s to v to u is actually shorter than 
the path from s to u without going through v. 

n  Other algorithms exist that handle edges with negative 
weights for weighted shortest-path problem. 



All-pairs shortest paths...	

“Floyd-Warshall algorithm”!
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Matrix representation!
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All-pairs shortest paths...	
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 dij  =  shortest distance from i to j	

	
through {1, …, k} 	
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All-pairs shortest paths...	
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to store the path, another matrix can track the last intermediate vertex 	


0	
 8	
 12	
 12	
 1	

13	
 0	
 6	
 6	
 12	

22	
 9	
 0	
 15	
 21	

7	
 9	
 0	
 0	
 8	

18	
 20	
 11	
 11	
 0	




Floyd-Warshall Pseudocode	


Input: 	
 	
 	
             (the initial edge-cost matrix)	


Output: 	
 	
             (the final path-cost matrix)	

D0 = (dij )	


0	


Dn = (dij )	

n	


for k = 1 to n              //  intermediate vertices considered 	


    for i = 1 to n           //  the “from” vertex	


        for j = 1 to n       //  the “to” vertex	


            dij = min{  dij  ,  dik  +  dkj }	

k-1	
k	
 k-1	
 k-1	


best, ignoring vertex k 
best, including vertex k 


