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B-Trees 

Based on materials by D. Frey and  
T. Anastasio 
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Large Trees 

n  Tailored toward applications where tree 
doesn’t fit in memory 
q  operations much faster than disk accesses 
q  want to limit levels of tree (because each new 

level requires a disk access) 
q  keep root and top level in memory 
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An Alternative to BSTs 

n  Up until now we assumed that each node in a BST 
stored the data. 

n  What about having the data stored only in the 
leaves? 

n  The internal nodes just guide our search to the leaf 
which contains the data we want. 

n  We’ll restrict this discussion of such trees to those in 
which all leaves are at the same level. 
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Figure 1 - A BST with data stored in the leaves 
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Observations 

n  Store data only at leaves; all leaves at same level 
q  interior and exterior nodes have different structure 
q  interior nodes store one key and two subtree 

pointers 
q  all search paths have same length: ⎡lg n⎤ 

(assuming one element per leaf) 
q  can store multiple data elements in a leaf 
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M-Way Trees 

n  A generalization of the previous BST model 
q  each interior node has M subtrees pointers  
 and M-1 keys 

n  the previous BST would be called a “2-way tree” or “M-
way tree of order 2” 

q  as M increases, height decreases: ⎡lgM n⎤ 
(assuming one element per leaf) 

q  A perfect M-way tree of height h has Mh leaves 
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An M-Way Tree of Order 3 

Figure 2 (next page) shows the same data as figure 1, 
stored in an M-way tree of order 3.  In this example 
M = 3 and h = 2, so the tree can support 9 leaves, 
although it contains only 8. 

One way to look at the reduced path length with 
increasing M is that the number of nodes to be visited 
in searching for a leaf is smaller for large M. 

We’ll see that when data is stored on the disk, each 
node visited requires a  disk access, so reducing the 
nodes visited is essential. 
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Figure 2 -- An M-Way tree of order 3 
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Searching in an M-Way Tree 

n  Different from standard BST search 
q  search always terminates at a leaf node 
q  might need to scan more than one element at a leaf 
q  might need to scan more than one key at an interior node 

n  Trade-offs 
q  tree height decreases as M increases 
q  computation at each node during search increases as M 

increases 
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Searching an M-Way Tree 

Search (MWayNode v, DataType element, boolean foundIt) 
if (v == NULL) return failure; 
if (v is a leaf) 

 search the list of values looking for element 
 if found, return success otherwise return failure 

    else (if v is an interior node) 
  search the keys to find which subtree element is in 
  recursively search the subtree 
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Search Algorithm: Traversing the M-way Tree 

Everything in this 
subtree is smaller than 
this key 

In any interior node, find the first key > search item, and traverse the link to the left of that key. Search for any 
item >= the last key in the subtree pointed to by the rightmost link. Continue until search reaches a leaf. 
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Figure 3 – searching in an M-way tree of order 4 
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Is it worth it? 

n  Is it worthwhile to reduce the height of the 
search tree by letting M increase? 

n  Although the number of nodes visited 
decreases, the amount of computation at 
each node increases. 

n  Where’s the payoff? 
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An example 

n  Consider storing 107 items in a balanced 
BST and in an M-way tree of order 10. 

n  The height of the BST will be lg(107) ~ 24. 
n  The height of the M-Way tree will be 

log(107 ) = 7 (assuming that we store just 
1 record per leaf) 

n  However, in the BST, just one comparison 
will be done at each interior node, but in 
the M-Way tree, 9 will be done  
(worst case) 
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How can this be worth the price? 

n  Only if it somehow takes longer to descend the tree 
than it does to do the extra computation 

n  This is exactly the situation when the nodes are 
stored externally (e.g. on disk) 

n  Compared to disk access time, the time for extra 
computation is insignificant 

n  We can reduce the number of accesses by sizing 
the M-way tree to match the disk block and record 
size.  
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A Generic M-Way Tree Node 
public class MwayNode<Ktype, Dtype> 

{ 

   // code for public interface here  

  // constructors, accessors, mutators 

  
private boolean isLeaf;   // true if node is a leaf 
private int m;      // the “order” of the node 
private int nKeys;     // nr of actual keys used  
private ArrayList<Ktype> keys; // array of keys(size = m - 1) 
private MWayNode subtrees[ ];  // array of pts (size = m) 
private int nElems;    // nr poss. elements in leaf 
private List<Dtype> data;   // data storage if leaf 

}   
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B-Tree Definition 

A B-Tree of order M is an M-Way tree with the following 
constraints 
1.  The root is either a leaf or has between 2 and M subtrees 
2.  All interior node (except maybe the root) have between 
3.  ⎡M / 2⎤ and M subtrees 

(i.e. each interior node is at least “half full”) 
4.  All leaves are at the same level.  A leaf must store between 

⎡L / 2⎤ and L data elements, where L is a fixed  
constant >= 1 (i.e. each leaf is at least “half full”, 
except when the tree has fewer than L/2 elements) 
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A B-Tree example 

n  The following figure (also figure 3) shows a B-Tree 
with M = 4 and L = 3 

n  The root node can have between 2 and M = 4 
subtrees 

n  Each other interior node can have between 
    ⎡ M / 2⎤ = ⎡ 4 / 2⎤  = 2 and M = 4 subtrees and up to 

M – 1 = 3 keys. 
n  Each exterior node (leaf) can hold between  
    ⎡ L / 2⎤  = ⎡ 3 / 2⎤  = 2 and L = 3 data elements 
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Figure 4 – A B-Tree with M = 4 and L = 3 
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Designing a B-Tree 

n  Recall that M-way trees (and therefore B-trees) are 
often used when there is too much data to fit in 
memory.  Therefore each node and leaf access 
costs one disk access. 

n  When designing a B-Tree (choosing the values of M 
and L), we need to consider the size of the data 
stored in the leaves, the size of the keys and 
pointers stored in the interior nodes, and the size of 
a disk block. 
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Student Record Example 

Suppose our B-Tree stores student records which 
contain name, address, etc. and other data totaling 
1024 bytes. 

Further assume that the key to each student record 
(ssn??) is 8 bytes long. 

Assume also that a pointer (really a disk block number, 
not a memory address) requires 4 bytes 

And finally, assume that our disk block is 4096 bytes 
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Calculating L 

L is the number of data records that can be 
stored in each leaf.  Since we want to do just 
one disk access per leaf, this is the same as 
the number of data records per disk block. 

Since a disk block is 4096 and a data record is 
1024, we choose L = ⎣4096 / 1024⎦ = 4 data 
records per leaf. 
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Calculating M 

Each interior node contains M pointers and M-1 
keys. To maximize M (and therefore keep the tree 
flat and wide) and yet do just one disk access per 
interior node, we have the following relationship 

  4M + 8 ( M – 1) <= 4096 
   12M <= 4104 
       M <= 342 

So choose the largest possible M (making tree as 
shallow as possible) of 342. 
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Performance of our B-Tree 

With M = 342 the height of our tree for N students 
will be ⎡ log342 ⎡ N/L ⎤ ⎤ . 

For example, with N = 100,000 (about 10 times the 
size of UMBC student population) the height of 
the tree with M = 342 would be no more than 2, 
because    ⎡ log342(25000)⎤ = 2. 

So any student record can be found in 3 disk 
accesses. If the root of the B-Tree is stored in 
memory, then only 2 disk accesses are needed . 
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Insertion of X in a B-Tree 
n  Search to find the leaf into which X should be 

inserted 
n  If the leaf has room (fewer than L elements), insert X 

and write the leaf back to the disk. 
n  If the is leaf full, split it into two leaves, each with half 

of elements. Insert X into the appropriate new leaf 
and write new leaves back to the disk. 
q  Update the keys in the parent 
q  If the parent node is already full, split it in the same manner 
q  Splits may propagate all the way to the root, in which case, 

the root is split (this is how the tree grows in height) 
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Insert 33 into this B-Tree 
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Figure 5 – before inserting 33 
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Inserting 33 

n  Traversing the tree from the root, we find that 
33 is less than 36 and is greater than 22, 
leading us to the 2nd subtree.  Since 33 is 
greater than 32 we are led to the 3rd leaf (the 
one containing 32 and 34). 

n  Since there is room for an additional data 
item in the leaf it is inserted (in sorted order 
which means reorganizing the leaf) 
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After inserting 33  
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Figure 6 – after inserting 33 
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Now insert 35 

n  This item also belongs in the 3rd leaf of the 
2nd subtree.  However, that leaf is full. 

n  Split the leaf in two and update the parent to 
get the tree in figure 7. 
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After inserting 35 

Figure 7 – after inserting 35 
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Inserting 21 

n  This item belongs in the 4th leaf of the 1st subtree 
(the leaf containing 18, 19, 20). 

n  Since the leaf is full, we split it and update the keys 
in the parent. 

n  However, the parent is also full, so it must be split 
and its parent (the root) updated. 

n  But this would give the root 5 subtrees which is not 
allowed, so the root must also be split. 

n  This is the only way the tree grows in height 
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After inserting 21 

Figure 8 – after inserting 21 
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B-tree Deletion 
•  Find leaf containing element to be deleted. 
•  If that leaf is still full enough (still has ⎡ L / 2⎤ 

elements after remove) write it back to disk 
without that element.  Then change the key in the 
ancestor if necessary. 

•  If leaf is now too empty (has less than ⎡ L / 2⎤ 
elements), borrow an element from a neighbor. 

•  If neighbor would be too empty, combine two leaves into one. 
•  This combining requires updating the parent which may now have too few subtrees. 
•  If necessary, continue the combining up the tree 
•  Does it matter which neighbor we borrow from? 


