K-D Trees

Based on materials by Dennis Frey, Yun Peng, Jian Chen, Daniel Hood, and Jianping Fan

K-D Tree

Introduction

- Multiple dimensional data
 - Range queries in databases of multiple keys:
 - Ex. find persons with

 $34 \le age \le 49$ and $100k \le annual income \le 150k$

- GIS (geographic information system)
- Computer graphics
- Extending BST from one dimensional to k-dimensional
 - It is a binary tree
 - Organized by levels (root is at level 0, its children level 1, etc.)
 - Tree branching at level 0 according to the first key, at level 1 according to the second key, etc.

KdNode

Each node has a vector of keys, in addition to the pointers to its subtrees.

A 2-D tree example

K-D tree decomposition for the point set (2,3), (5,4), (9,6), (4,7), (8,1), (7,2).

2-D Tree Operations

- A 2-D item (vector of size 2 for the two keys) is inserted
- New node is inserted as a leaf
- Different keys are compared at different levels
- Find/print with an orthogonal (rectangular) range

- exact match: insert (low[level] = high[level] for all levels)
- □ partial match: (query ranges are given to only some of the k keys, other keys can be thought in range ±∞)

Insert (55, 62) into the following 2-D

printRange in a 2-D Tree

low[0] = 35, high[0] = 40; low[1] = 23, high[1] = 30;

This sub-tree is never searched.

Searching is "preorder". Efficiency is obtained by "pruning" subtrees from the search.

3-D Tree example

What property (or properties) do the nodes in the subtrees labeled A, B, C, and D have?

3-D Tree

K-D Operations

- Modify the 2-D insert code so that it works for K-D trees.
- Modify the 2-D printRange code so that it works for K-D trees.

K-D Tree Performance Insert

- Average and balanced trees: O(lg N)
- Worst case: O(N)
- Print/search with a square range query
 - Exact match: same as insert (low[level] = high[level] for all levels)
 - Range query: for M matches
 - Perfectly balanced tree:
 K-D trees: O(M + kN ^(1-1/k))
 2-D trees: O(M + √N)
 - Partial match

in a random tree: O(M + N $^{\alpha}$) where α = (-3 + $\sqrt{17}$) / 2

K-D Tree Performance

- More on range query in a perfectly balanced 2-D tree:
 - Consider one boundary of the square (say, low[0])
 - Let T(N) be the number of nodes to be looked at with respect to low[0]. For the current node, we may need to look at
 - One of the two children (e.g., node (27, 28)), and
 - Two of the four grand children (e.g., nodes (30, 11) and (31, 85)).
 - Write T(N) = 2 T(N/4) + c, where N/4 is the size of subtrees 2 levels down (we are dealing with a perfectly balanced tree here), and c = 3.
 - Solving this recurrence equation:

$$T(N) = 2T(N/4) + c = 2(2T(N/16) + c) + c$$

$$= c(1 + 2 + \dots + 2^{(\log_{4} N)} = 2^{(1 + \log_{4} N)} - 1$$

= 2*2^{(\log_{4} N)} - 1 = 2*2^{((\log_{2} N)/2)} - 1 = O(\sqrt{N})

K-D Tree Remarks

Remove

- No good remove algorithm beyond lazy deletion
 - (mark the node as removed)
- Balancing K-D Tree
 - No known strategy to guarantee a balanced 2-D tree
 - Periodic re-balance
- Extending 2-D tree algorithms to k-D
 - Cycle through the keys at each level

Insertion

Jaruloj Chongstitvatana

k-d trees

Exact Search

Jaruloj Chongstitvatana

k-d trees

Range search

Jaruloj Chongstitvatana

k-d trees

Deletion

Deletion

Applications

- Query processing in sensor networks
- Nearest-neighbor searchers
- Optimization
- Ray tracing
- Database search by multiple keys

Examples of applications

Progressive Meshes

Developed by Hugues Hoppe, Microsoft Research Inc. Published first in SIGGRAPH 1996.

(c) Texture mapped \hat{M} (79,202 faces)

(d) Texture mapped (10,013 faces)

(e) 764 generalized triangle strips

Terrain visualization applications

Geometric subdivision

Problems with Geometric Subdivisions

Real-time Optimally Adapting Meshes

ROAM principle

The basic operating principle of ROAM

Quad-tree and Bin-tree for ROAM (real-time adaptive mesh)

Parti-Game Reinforcement Learning

 http://www.autonlab.org/autonweb/14745/version/1/part/ 4/data/partigame-demo.mpg

Decision Tree

 Database indexing structure is built for decision making and tries to make the decision as fast as possible!

